login
A377361
E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x)) )^3.
2
1, 3, 27, 435, 10308, 324942, 12831540, 610024398, 33948639024, 2165995595208, 155913776865216, 12501945620113320, 1105228405532295216, 106806396107364409440, 11201958792185117156640, 1267313834232739887340464, 153842580381390055963315200, 19946923686925035463312117632
OFFSET
0,2
FORMULA
E.g.f.: B(x)^3, where B(x) is the e.g.f. of A367152.
a(n) = 3 * (3*n+2)! * Sum_{k=0..n} |Stirling1(n,k)|/(3*n-k+3)!.
E.g.f.: (1/x) * Series_Reversion( x/(1 - log(1-x))^3 ).
PROG
(PARI) a(n) = 3*(3*n+2)!*sum(k=0, n, abs(stirling(n, k, 1))/(3*n-k+3)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 26 2024
STATUS
approved