login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376393
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + log(1-x))^3 ).
4
1, 3, 33, 669, 20130, 808902, 40799514, 2480325810, 176637134184, 14428585258896, 1330156753687152, 136632403748954088, 15476220160149512160, 1916493979349783418192, 257601843144279267685056, 37352685483321694825767120, 5812026059839341212943591168, 965974072760231560672817681280
OFFSET
0,2
FORMULA
E.g.f. A(x) satisfies A(x) = 1/(1 + log(1 - x*A(x)))^3.
E.g.f.: B(x)^3, where B(x) is the e.g.f. of A367139.
a(n) = (3/(3*n+3)!) * Sum_{k=0..n} (3*n+k+2)! * |Stirling1(n,k)|.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+log(1-x))^3)/x))
(PARI) a(n) = 3*sum(k=0, n, (3*n+k+2)!*abs(stirling(n, k, 1)))/(3*n+3)!;
CROSSREFS
Cf. A354122.
Sequence in context: A336636 A364242 A376390 * A379860 A091462 A340971
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 22 2024
STATUS
approved