login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354122
Expansion of e.g.f. 1/(1 + log(1 - x))^3.
9
1, 3, 15, 102, 870, 8892, 105708, 1431168, 21722136, 365105928, 6729341832, 134915992560, 2922576142320, 68013701197920, 1692075061072800, 44810389419079680, 1258472984174461440, 37357062009383877120, 1168635883239630120960, 38424619272539153157120
OFFSET
0,2
FORMULA
a(n) = (1/2) * Sum_{k=0..n} (k + 2)! * |Stirling1(n,k)|.
a(n) ~ sqrt(Pi/2) * n^(n + 5/2) / (exp(1) - 1)^(n+3). - Vaclav Kotesovec, Jun 04 2022
a(0) = 1; a(n) = Sum_{k=1..n} (2*k/n + 1) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, Nov 19 2023
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x))^3))
(PARI) a(n) = sum(k=0, n, (k+2)!*abs(stirling(n, k, 1)))/2;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 17 2022
STATUS
approved