login
A354120
Expansion of e.g.f. 1/(1 - log(1 + x))^3.
4
1, 3, 9, 30, 114, 492, 2388, 12912, 77016, 503112, 3570552, 27399600, 225729360, 1991996640, 18690559200, 186620451840, 1963991600640, 21914748541440, 255336518292480, 3155705206364160, 40209018105116160, 547746803311864320, 7525926332189130240
OFFSET
0,2
COMMENTS
a(34) is negative. - Vaclav Kotesovec, Jun 04 2022
LINKS
FORMULA
a(n) = (1/2) * Sum_{k=0..n} (k + 2)! * Stirling1(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (2 * k/n + 1) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, Nov 19 2023
MATHEMATICA
Table[Sum[(k+2)! * StirlingS1[n, k], {k, 0, n}]/2, {n, 0, 35}] (* Vaclav Kotesovec, Jun 04 2022 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+x))^3))
(PARI) a(n) = sum(k=0, n, (k+2)!*stirling(n, k, 1))/2;
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 17 2022
STATUS
approved