login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354120
Expansion of e.g.f. 1/(1 - log(1 + x))^3.
4
1, 3, 9, 30, 114, 492, 2388, 12912, 77016, 503112, 3570552, 27399600, 225729360, 1991996640, 18690559200, 186620451840, 1963991600640, 21914748541440, 255336518292480, 3155705206364160, 40209018105116160, 547746803311864320, 7525926332189130240
OFFSET
0,2
COMMENTS
a(34) is negative. - Vaclav Kotesovec, Jun 04 2022
LINKS
FORMULA
a(n) = (1/2) * Sum_{k=0..n} (k + 2)! * Stirling1(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (2 * k/n + 1) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, Nov 19 2023
MATHEMATICA
Table[Sum[(k+2)! * StirlingS1[n, k], {k, 0, n}]/2, {n, 0, 35}] (* Vaclav Kotesovec, Jun 04 2022 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+x))^3))
(PARI) a(n) = sum(k=0, n, (k+2)!*stirling(n, k, 1))/2;
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 17 2022
STATUS
approved