login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120018
The third self-composition of A120010; g.f.: A(x) = G(G(G(x))), where G(x) = g.f. of A120010.
3
1, 3, 9, 30, 114, 480, 2157, 10092, 48525, 238143, 1187952, 6006171, 30710553, 158535975, 825143145, 4325320191, 22814398392, 120999555588, 644878190175, 3451975941243, 18550877091063, 100047282676491, 541314936448764
OFFSET
1,2
COMMENTS
Row 3 of A120019, the square table of self-compositions of A120010.
LINKS
FORMULA
G.f.: A(x) = (1 - sqrt(1 - 4*x*(1-x)/(1-3*x+3*x^2) ))/2.
Recurrence: n*a(n) = 2*(5*n-6)*a(n-1) - (31*n-66)*a(n-2) + 42*(n-3)*a(n-3) - 21*(n-4)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ sqrt(14*sqrt(21)-42)*((7+sqrt(21))/2)^n/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012
EXAMPLE
A(x) = x + 3*x^2 + 9*x^3 + 30*x^4 + 114*x^5 + 480*x^6 + 2157*x^7 +...
G(x) = x + x^2 + x^3 + 2*x^4 + 6*x^5 + 18*x^6 + 53*x^7 + 158*x^8 +...
where G(x) is the g.f. of A120010 and G(G(G(x))) = A(x).
MATHEMATICA
CoefficientList[Series[(1 - Sqrt[1 - 4 x (1-x) / (1 -3 x + 3 x^2)]) / x / 2, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
PROG
(PARI) {a(n)=polcoeff((1 - sqrt(1 - 4*x*(1-x)/(1-3*x+3*x^2+x*O(x^n)) ))/2, n)}
CROSSREFS
Cf. A120010, A120017 (2nd self-composition), A120019.
Sequence in context: A350589 A308554 A055730 * A354120 A091353 A279199
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 14 2006
EXTENSIONS
Typo in Mma program fixed by Vincenzo Librandi, May 22 2013
STATUS
approved