login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120015
Coefficients of x^n in the (n+1)-th self-composition of the g.f. of A120009, so that: a(n) = [x^n] { (x-x^2) o x/(1-(n+1)*x) o (1-sqrt(1-4*x))/2 } for n>=1.
2
1, 3, 16, 120, 1164, 13965, 200960, 3387636, 65644780, 1440018822, 35314018656, 958109355632, 28508766348664, 923461269689985, 32357613376995840, 1219728800410342556, 49225886778689380044, 2118029584754948604618
OFFSET
1,2
FORMULA
a(n) = Sum_{j=1..n} (n+1)^(j-2)*(n-j+2)*j*(2*n-j-1)!/(n-j)!/n! - Paul D. Hanna and Max Alekseyev.
EXAMPLE
Successive self-compositions of F(x), the g.f. of A120009, begin:
F(x) = x + x^2 + x^3 - 6x^5 - 33x^6 - 143x^7 - 572x^8 - 2210x^9 +...
F(F(x)) = (1)x + 2x^2 + 4x^3 + 6x^4 - 4x^5 - 100x^6 - 664x^7 +...
F(F(F(x))) = x + (3)x^2 + 9x^3 + 24x^4 + 42x^5 - 87x^6 - 1575x^7 +...
F(F(F(F(x)))) = x + 4x^2 + (16)x^3 + 60x^4 + 192x^5 + 360x^6 +...
F(F(F(F(F(x))))) = x + 5x^2 + 25x^3 + (120)x^4 + 530x^5 +1955x^6 +...
F(F(F(F(F(F(x)))))) = x + 6x^2 + 36x^3 +210x^4 + (1164)x^5 +5892x^6+...
PROG
(PARI) {a(n)=sum(j=1, n, (n+1)^(j-2)*(n-j+2)*j*(2*n-j-1)!/(n-j)!/n!)}
CROSSREFS
Cf. A120014; A120009, A127275 (g.f.=F(F(x))), A120012 (g.f.=F(F(F(x)))); A120020.
Sequence in context: A136168 A187735 A200318 * A003692 A166883 A145158
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 12 2006
STATUS
approved