The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200318 E.g.f. satisfies: A(x) = x-1 + cosh(A(x)). 1
 1, 1, 3, 16, 120, 1156, 13608, 189316, 3039060, 55291336, 1124309208, 25268818576, 622008616320, 16642670404816, 480923246983728, 14926731083999296, 495243684302520000, 17491488288340789696, 655224017429959987968, 25947019896579324410176, 1083050878686674070676800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(n) is the number of leaf labeled rooted trees with n leaves in which the outdegrees of the root and all internal nodes are positive even integers. - Geoffrey Critzer, Jul 31 2016 LINKS Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 128,(labeled hierarchies). FORMULA E.g.f. satisfies: (1) A(x) = Series_Reversion(1+x - cosh(x)). (2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) (cosh(x) - 1)^n / n!. (3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (cosh(x) - 1)^n/x / n! ). a(n) ~ n^(n-1) / (2^(1/4) * exp(n) * (1-sqrt(2)+log(1+sqrt(2)))^(n-1/2)). - Vaclav Kotesovec, Jan 10 2014 EXAMPLE E.g.f.: A(x) = x + x^2/2! + 3*x^3/3! + 16*x^4/4! + 120*x^5/5! +... where A(1+x - cosh(x)) = x and A(x) = x-1 + cosh(A(x)). The e.g.f. satisfies: A(x) = x + (cosh(x)-1) + d/dx (cosh(x)-1)^2/2! + d^2/dx^2 (cosh(x)-1)^3/3! + d^3/dx^3 (cosh(x)-1)^4/4! +... as well as the logarithmic series: log(A(x)/x) = (cosh(x)-1)/x + d/dx (cosh(x)-1)^2/x/2! - d^2/dx^2 (cosh(x)-1)^3/x/3! + d^3/dx^3 (cosh(x)-1)^4/x/4! +... MATHEMATICA Rest[CoefficientList[InverseSeries[Series[1 + x - Cosh[x], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 10 2014 *) PROG (PARI) {a(n)=n!*polcoeff(serreverse(1+x-cosh(x+x^2*O(x^n))), n)} for(n=1, 21, print1(a(n), ", ")) (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, (cosh(x+x*O(x^n))-1)^m)/m!)+x*O(x^n)); n!*polcoeff(A, n)} (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, (cosh(x+x*O(x^n))-1)^m/x)/m!)+x*O(x^n))); n!*polcoeff(A, n)} CROSSREFS Cf. A200317, A000311, A052526. Sequence in context: A192783 A136168 A187735 * A120015 A003692 A166883 Adjacent sequences:  A200315 A200316 A200317 * A200319 A200320 A200321 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 20:40 EST 2021. Contains 349589 sequences. (Running on oeis4.)