|
|
A200321
|
|
Irregular triangle T(n,k) where row n contains the maximal nodes in the graph of XOR connected primes of interval [2^n+1,2^(n+1)-1], n>=4.
|
|
1
|
|
|
17, 43, 59, 103, 139, 151, 157, 173, 193, 281, 457, 461, 463, 499, 607, 1409, 1451, 2143, 2657, 4229, 16063, 19583, 19699, 62143, 124981, 166303, 172663, 240257, 244301, 276041, 289853, 305411, 327319, 376639, 417941, 505663, 518761, 524119, 600703, 1056287
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
4,1
|
|
COMMENTS
|
Nodes with degree > 2 that have the greatest number of vertices in prime XOR connected graphs are defined as maximal nodes. The graph is constructed in the manner outlined in A200143.
|
|
LINKS
|
|
|
EXAMPLE
|
The XOR connected graph for the interval [33,63], n=5, is
37 41 43 47 53 59 61
37 0 0 1 0 0 1 0
41 0 0 1 1 0 0 0 37
43 1 1 0 0 1 0 0 / \
47 0 1 0 0 0 0 0 or 47~41~43 59~61
53 0 0 1 0 0 1 0 \ /
59 1 0 0 0 1 0 1 53
61 0 0 0 0 0 1 0
The maximum number of vertices connected to any prime is 3, therefore 43 and 59 are members of row n=5.
Triangle begins:
17;
43, 59;
103;
139, 151, 157, 173, 193;
281, 457, 461, 463, 499;
607;
1409, 1451;
|
|
MAPLE
|
q:= (l, p, r)-> `if`(r-l=2, 0, `if`(isprime(l+r-p), 1, 0)+
`if`((l+r)/2>p, q(l, p, (l+r)/2), q((l+r)/2, p, r))):
T:= proc(n) local r, l, u, p, m, d;
r:= NULL;
l:= 2^n; u:= 2*l;
p:= nextprime(l);
m:= -1;
while p<=u do
d:= q(l, p, u);
if d=m then r:= r, p
elif d>m then m:= d; r:= p fi;
p:= nextprime(p)
od;
`if`(m>=3, r, NULL)
end:
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|