login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200321 Irregular triangle T(n,k) where row n contains the maximal nodes in the graph of XOR connected primes of interval [2^n+1,2^(n+1)-1], n>=4. 1
17, 43, 59, 103, 139, 151, 157, 173, 193, 281, 457, 461, 463, 499, 607, 1409, 1451, 2143, 2657, 4229, 16063, 19583, 19699, 62143, 124981, 166303, 172663, 240257, 244301, 276041, 289853, 305411, 327319, 376639, 417941, 505663, 518761, 524119, 600703, 1056287 (list; graph; refs; listen; history; text; internal format)
OFFSET
4,1
COMMENTS
Nodes with degree > 2 that have the greatest number of vertices in prime XOR connected graphs are defined as maximal nodes. The graph is constructed in the manner outlined in A200143.
LINKS
EXAMPLE
The XOR connected graph for the interval [33,63], n=5, is
37 41 43 47 53 59 61
37 0 0 1 0 0 1 0
41 0 0 1 1 0 0 0 37
43 1 1 0 0 1 0 0 / \
47 0 1 0 0 0 0 0 or 47~41~43 59~61
53 0 0 1 0 0 1 0 \ /
59 1 0 0 0 1 0 1 53
61 0 0 0 0 0 1 0
The maximum number of vertices connected to any prime is 3, therefore 43 and 59 are members of row n=5.
Triangle begins:
17;
43, 59;
103;
139, 151, 157, 173, 193;
281, 457, 461, 463, 499;
607;
1409, 1451;
MAPLE
q:= (l, p, r)-> `if`(r-l=2, 0, `if`(isprime(l+r-p), 1, 0)+
`if`((l+r)/2>p, q(l, p, (l+r)/2), q((l+r)/2, p, r))):
T:= proc(n) local r, l, u, p, m, d;
r:= NULL;
l:= 2^n; u:= 2*l;
p:= nextprime(l);
m:= -1;
while p<=u do
d:= q(l, p, u);
if d=m then r:= r, p
elif d>m then m:= d; r:= p fi;
p:= nextprime(p)
od;
`if`(m>=3, r, NULL)
end:
seq(T(n), n=4..18); # Alois P. Heinz, Nov 16 2011
CROSSREFS
Cf. A200143.
Sequence in context: A123592 A260553 A165285 * A165981 A109998 A328998
KEYWORD
nonn,tabf
AUTHOR
Brad Clardy, Nov 15 2011
EXTENSIONS
More terms from Alois P. Heinz, Nov 16 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 7 22:13 EDT 2024. Contains 375749 sequences. (Running on oeis4.)