OFFSET
1,1
COMMENTS
If Andrica's conjecture is true, a(n) is at most 1 when n gets very large.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000
Carlos Rivera, Conjecture 8
Eric Weisstein's World of Mathematics, Andrica's Conjecture
Marek Wolf, A Note on the Andrica Conjecture, arXiv:1010.3945 [math.NT], 2010.
EXAMPLE
a(9) = 5 because 10*(sqrt(29) - sqrt(23)) = 5.8933328382....
MAPLE
A200324:=n->floor(10*(sqrt(ithprime(n+1))-sqrt(ithprime(n)))): seq(A200324(n), n=1..200); # Wesley Ivan Hurt, Jan 19 2017
MATHEMATICA
Table[Floor[10*(Sqrt[Prime[n + 1]] - Sqrt[Prime[n]])], {n, 100}]
Floor[10(Sqrt[Last[#]]-Sqrt[First[#]])]&/@Partition[Prime[Range[90]], 2, 1] (* Harvey P. Dale, Aug 24 2012 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Arkadiusz Wesolowski, Nov 18 2011
STATUS
approved