login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200323
For each composite m = A002808(n), a(n) is the smallest number k for which the equation x^m + (x+k)^m = (x+k+1)^m (mod m) has no solution, where x = 0..m-1.
0
2, 3, 2, 3, 3, 2, 2, 1, 2, 3, 2, 7, 2, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 1, 2, 3, 2, 3, 4, 2, 2, 3, 2, 2, 3, 1, 2, 1, 3, 2, 2, 3, 2, 4, 3, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 3, 4, 1, 2, 2, 1, 2, 3, 2, 7, 3, 2, 3, 2, 2, 3, 1, 2, 1, 2
OFFSET
1,1
EXAMPLE
a(12) = 7 because A002808(12) = 21 and the equation x^21 + (x+7)^21 = (x+8)^21 (mod 21)has no solution.
MAPLE
for n from 1 to 120 do: i:=0:for k from 1 to 500 while(i=0) do :ii:=0:for x from 0 to n-1 do:if x^n+(x+k)^n -(x+k+1)^n mod n =0 then ii:=ii+1:else fi:od: if ii=0 then i:=1:printf(`%d, `, k):else fi:od:od:
CROSSREFS
Sequence in context: A370455 A115397 A218656 * A075370 A332297 A030350
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 16 2011
STATUS
approved