login
A200046
Numbers n such that the equation x^n + (x+1)^n = (x+2)^n (mod n), x = 0..n-1 has no solution.
2
15, 25, 33, 35, 39, 55, 57, 69, 75, 95, 99, 115, 117, 119, 121, 123, 125, 129, 135, 143, 145, 153, 155, 169, 175, 195, 203, 205, 209, 215, 217, 221, 225, 235, 247, 253, 255, 259, 273, 275, 285, 289, 295, 299, 305, 309, 315, 319, 321, 323, 325, 333, 335, 339
OFFSET
1,1
COMMENTS
All numbers are composites.
MAPLE
for n from 1 to 340 do:ii:=0:for x from 0 to n-1 do:if x^n+(x+1)^n -(x+2)^n mod n =0 then ii:=ii+1:else fi:od: if ii=0 then printf(`%d, `, n):else fi:od:
CROSSREFS
Sequence in context: A102802 A050692 A050693 * A349750 A171133 A152246
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 14 2011
STATUS
approved