The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200219 Number of solutions of the equation x^n + (x+1)^n = (x+2)^n  (mod n) for x = 0..n-1. 2
 1, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 0, 8, 1, 6, 1, 4, 1, 2, 1, 8, 0, 2, 9, 2, 1, 4, 1, 16, 0, 2, 0, 12, 1, 2, 0, 8, 1, 4, 1, 2, 3, 2, 1, 16, 7, 10, 2, 2, 1, 18, 0, 8, 0, 2, 1, 8, 1, 2, 3, 32, 2, 4, 1, 4, 0, 2, 1, 24, 1, 2, 0, 4, 6, 4, 1, 16, 27, 2, 1, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS a(n) = 0 for n = 15, 25, 33, 35, 39, 55, 57,… (see A200046). a(n) = 1 if n prime. LINKS Michel Lagneau, Table of n, a(n) for n = 1..1000 EXAMPLE a(6) = 2 because: for x = 3,  3^6 + 4^6 == 1(mod 6) and 5^6 == 1(mod 6). for x = 5,  5^6 + 6^6 == 1 (mod 6) and (7)^6 == 1 (mod 6). MAPLE for n from 1 to 100 do:ii:=0:for x from 0 to n-1 do:if x^n+(x+1)^n -(x+2)^n mod n=0 then ii:=ii+1:else fi:od: printf(`%d, `, ii):od: MATHEMATICA Array[Function[n, Count[Array[Mod[#^n+(#+1)^n-(#+2)^n, n]&, n, 0], 0]], 84] CROSSREFS Cf. A195637, A200046. Sequence in context: A171453 A285707 A164879 * A270120 A325567 A009195 Adjacent sequences:  A200216 A200217 A200218 * A200220 A200221 A200222 KEYWORD nonn AUTHOR Michel Lagneau, Nov 14 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 15:54 EDT 2021. Contains 343884 sequences. (Running on oeis4.)