login
A200220
Product of Fibonacci and Padovan numbers: a(n) = A000045(n+1)*A000931(n+5).
0
1, 1, 2, 6, 10, 24, 52, 105, 238, 495, 1068, 2304, 4893, 10556, 22570, 48363, 103805, 222224, 476634, 1021515, 2189200, 4693415, 10058607, 21561120, 46215400, 99056688, 212327858, 455105352, 975492413, 2090916520, 4481729501, 9606342690, 20590584676, 44134642493, 94599971180
OFFSET
0,3
FORMULA
G.f.: (1 + x - x^2 - x^3 + x^4) / (1 - 3*x^2 - 4*x^3 + x^4 + x^5 - x^6).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 10*x^4 + 24*x^5 + 52*x^6 + 105*x^7 +...
MATHEMATICA
LinearRecurrence[{0, 3, 4, -1, -1, 1}, {1, 1, 2, 6, 10, 24}, 40] (* Harvey P. Dale, Mar 05 2019 *)
PROG
(PARI) {a(n)=fibonacci(n+1)*polcoeff((1+x)/(1-x^2-x^3+x*O(x^n)), n)}
CROSSREFS
Sequence in context: A183036 A120963 A370587 * A188224 A104142 A376843
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Nov 16 2011
STATUS
approved