login
A171453
a(n) = sum_i p_i^(e_i-1) where n = product_i p_i^e_i is the prime number decomposition of n.
1
0, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 3, 1, 2, 2, 8, 1, 4, 1, 3, 2, 2, 1, 5, 5, 2, 9, 3, 1, 3, 1, 16, 2, 2, 2, 5, 1, 2, 2, 5, 1, 3, 1, 3, 4, 2, 1, 9, 7, 6, 2, 3, 1, 10, 2, 5, 2, 2, 1, 4, 1, 2, 4, 32, 2, 3, 1, 3, 2, 3, 1, 7, 1, 2, 6, 3, 2, 3, 1, 9, 27, 2, 1, 4, 2, 2, 2, 5, 1, 5, 2, 3, 2, 2, 2, 17, 1, 8, 4, 7
OFFSET
1,4
LINKS
FORMULA
a(n) = A008475(n) - A067240(n).
MAPLE
A171453 := proc(n) add( op(1, f)^(op(2, f)-1), f =ifactors(n)[2]) ; end proc:
seq(A171453(n), n=1..100) ;
PROG
(PARI) A171453(n) = { my(f=factor(n)); vecsum(vector(#f~, i, f[i, 1]^(f[i, 2]-1))); }; \\ Antti Karttunen, Sep 24 2017
(Python)
from sympy import factorint
def A171453(n): return sum(p**(e-1) for p, e in factorint(n).items()) # Chai Wah Wu, Jul 01 2024
CROSSREFS
Sequence in context: A135545 A123317 A231557 * A285707 A164879 A200219
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Dec 09 2009
STATUS
approved