login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171455
G.f. satisfies: A(x) = 1 + 2*x*AGM(1, A(x)^4).
1
1, 2, 8, 48, 336, 2560, 20608, 172432, 1484704, 13069296, 117080576, 1063944416, 9783594304, 90869069872, 851218195008, 8032861976544, 76295247548480, 728766670652368, 6996258626856320, 67467783946608064, 653254749175955584, 6348266152788407648, 61896814517299122560
OFFSET
0,2
LINKS
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 10.4455646873939379197107245785697943345442804302403560446385803957... and c = 0.249453961126691324848964127252189659505429141278492076086314586719... - Vaclav Kotesovec, Nov 15 2023
EXAMPLE
G.f.: A(x) = 1 + 2*x + 8*x^2 + 48*x^3 + 336*x^4 + 2560*x^5 + ...
A(x)^2 = 1 + 4*x + 20*x^2 + 128*x^3 + 928*x^4 + 7232*x^5 + ...
A(x)^4 = 1 + 8*x + 56*x^2 + 416*x^3 + 3280*x^4 + 27008*x^5 + ...
AGM(1, A(x)^4) = 1 + 4*x + 24*x^2 + 168*x^3 + 1280*x^4 + 10304*x^5 + ...
MATHEMATICA
(* Calculation of constants {d, c}: *) {1/r, Sqrt[s*(1 - s - s^8 + s^9) / (2*Pi*(1 + 2*s + 2*s^2 + 2*s^3 + 2*s^4 + 2*s^5 + 2*s^6 - 14*s^7 + 9*s^8))]} /. FindRoot[{Pi*r*s^4 / EllipticK[1 - 1/s^8] == s - 1, -4*Pi*r*s^7 + Pi*r*(-1 + s^8)/(-1 + s) + 4*(-1 + s)*s^3 * EllipticE[1 - 1/s^8] == 0}, {r, 1/10}, {s, 3/2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Nov 15 2023 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+2*x*agm(1, A^4)); polcoeff(A, n)}
CROSSREFS
Cf. A171454.
Sequence in context: A007170 A355488 A379382 * A136722 A085615 A054726
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 09 2009
EXTENSIONS
More terms from Jinyuan Wang, Feb 25 2020
STATUS
approved