login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171457
Irregular triangle T(n, k) = coefficients of p(n, x), where p(n, x) = p(n-1, x)*Sum_{j=0..n-1} x^i - x*Sum_{j=0..binomial(n,2)-2} x^i, read by rows.
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 3, 6, 8, 8, 8, 6, 3, 1, 1, 1, 1, 4, 10, 18, 26, 33, 38, 38, 33, 26, 18, 10, 4, 1, 1, 1, 1, 5, 15, 33, 59, 92, 129, 166, 195, 211, 211, 195, 166, 129, 92, 59, 33, 15, 5, 1, 1, 1, 1, 6, 21, 54, 113, 205, 334, 499, 693, 899, 1095, 1257, 1364, 1401, 1364, 1257, 1095, 899, 693, 499, 334, 205, 113, 54, 21, 6, 1, 1
OFFSET
1,10
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
FORMULA
T(n, k) = coefficients of p(n, x), where p(n, x) = p(n-1, x)*Sum_{j=0..n-1} x^i - x*Sum_{j=0..binomial(n,2)-2} x^i, p(1,x) = 1, p(2,x) = 1+x, p(3,x) = 1+x+x^2+x^3.
EXAMPLE
The irregular triangle begins as:
1;
1, 1;
1, 1, 1, 1;
1, 1, 2, 3, 2, 1, 1;
1, 1, 3, 6, 8, 8, 8, 6, 3, 1, 1;
1, 1, 4, 10, 18, 26, 33, 38, 38, 33, 26, 18, 10, 4, 1, 1;
MATHEMATICA
p[n_, x_]:= p[n, x]= If[n<4, (1-x^2^(n-1))/(1-x), ((1-x^n)*p[n-1, x] - x*(1 - x^(Binomial[n, 2] -1)))/(1-x)];
T[n_]:= CoefficientList[p[n, x], x];
Table[T[n], {n, 1, 10}] (* modified by G. C. Greubel, May 10 2021 *)
PROG
(Sage)
def p(n, x): return (1-x^2^(n-1))/(1-x) if (n<4) else ((1-x^n)*p(n-1, x) -x*(1-x^(binomial(n, 2)-1)))/(1-x)
def T(n): return ( p(n, x) ).full_simplify().coefficients(sparse=False)
[T(n) for n in (1..10)] # G. C. Greubel, May 10 2021
CROSSREFS
Cf. A171456.
Sequence in context: A008406 A039735 A283761 * A376611 A129385 A217983
KEYWORD
nonn,tabf
AUTHOR
Roger L. Bagula, Dec 09 2009
EXTENSIONS
Edited by G. C. Greubel, May 10 2021
STATUS
approved