login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = 1 + 2*x*AGM(1, A(x)^4).
1

%I #13 Nov 15 2023 09:13:04

%S 1,2,8,48,336,2560,20608,172432,1484704,13069296,117080576,1063944416,

%T 9783594304,90869069872,851218195008,8032861976544,76295247548480,

%U 728766670652368,6996258626856320,67467783946608064,653254749175955584,6348266152788407648,61896814517299122560

%N G.f. satisfies: A(x) = 1 + 2*x*AGM(1, A(x)^4).

%H Vaclav Kotesovec, <a href="/A171455/b171455.txt">Table of n, a(n) for n = 0..235</a>

%F a(n) ~ c * d^n / n^(3/2), where d = 10.4455646873939379197107245785697943345442804302403560446385803957... and c = 0.249453961126691324848964127252189659505429141278492076086314586719... - _Vaclav Kotesovec_, Nov 15 2023

%e G.f.: A(x) = 1 + 2*x + 8*x^2 + 48*x^3 + 336*x^4 + 2560*x^5 + ...

%e A(x)^2 = 1 + 4*x + 20*x^2 + 128*x^3 + 928*x^4 + 7232*x^5 + ...

%e A(x)^4 = 1 + 8*x + 56*x^2 + 416*x^3 + 3280*x^4 + 27008*x^5 + ...

%e AGM(1, A(x)^4) = 1 + 4*x + 24*x^2 + 168*x^3 + 1280*x^4 + 10304*x^5 + ...

%t (* Calculation of constants {d,c}: *) {1/r, Sqrt[s*(1 - s - s^8 + s^9) / (2*Pi*(1 + 2*s + 2*s^2 + 2*s^3 + 2*s^4 + 2*s^5 + 2*s^6 - 14*s^7 + 9*s^8))]} /. FindRoot[{Pi*r*s^4 / EllipticK[1 - 1/s^8] == s - 1, -4*Pi*r*s^7 + Pi*r*(-1 + s^8)/(-1 + s) + 4*(-1 + s)*s^3 * EllipticE[1 - 1/s^8] == 0}, {r, 1/10}, {s, 3/2}, WorkingPrecision -> 70] (* _Vaclav Kotesovec_, Nov 15 2023 *)

%o (PARI) {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+2*x*agm(1,A^4));polcoeff(A,n)}

%Y Cf. A171454.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Dec 09 2009

%E More terms from _Jinyuan Wang_, Feb 25 2020