login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123317
Smallest prime power m such that n+m is a prime number.
2
1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 8, 5, 4, 3, 2, 1, 2, 1, 16, 5, 4, 3, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 32, 5, 4, 3, 2, 1, 8, 5, 4, 3, 2, 1, 2, 1, 256, 5, 4, 3, 2, 1, 4, 3, 2, 1, 2, 1, 16, 5, 4, 3, 2, 1, 4, 3, 2, 1, 128, 5, 4, 3, 2, 1, 8, 7, 16, 5, 4, 3, 2, 1, 4, 3, 2, 1, 2, 1
OFFSET
1,3
FORMULA
A123318(n) = n + a(n);
a(A006093(n)) = 1; a(A040976(n)) = 2 for n>2.
EXAMPLE
n=23: 23+1=3*2^3, 23+2=5^2, 23+3=13*2, 23+2^2=3^3, 23+5=7*2^2, 23+7=5*3*2, but 23+8=31=A000040(11), therefore a(23)=8;
n=24: 24+1=5^2, 24+2=13*2, 24+3=3^3, 24+2^2=7*2^2, but 24+5=29=A000040(10), therefore a(24)=5;
the smallest occurring proper odd prime power is 9=3^2:
n=118: 118+1=17*7, 118+2=5*3*2^3, 118+3=11^2, 118+2^2=61*2, 118+5=41*3, 118+7=5^3, 118+2^3=7*2*3^2, but 118+3^2=127=A000040(31), therefore a(118)=9.
MAPLE
A123317 := proc(n)
local m ;
m :=1 ;
if isprime(n+m) then
return m ;
end if;
for m from 2 do
if nops(numtheory[factorset](m)) = 1 then
if isprime(n+m) then
return m;
end if;
end if;
end do:
end proc:
seq(A123317(n), n=1..102) ; # R. J. Mathar, Aug 09 2019
CROSSREFS
Sequence in context: A372598 A276976 A135545 * A231557 A171453 A285707
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Sep 27 2006
STATUS
approved