This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276976 Smallest m such that b^m == b^n (mod n) for every integer b. 5
 0, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 4, 5, 2, 9, 4, 1, 2, 1, 8, 3, 2, 11, 6, 1, 2, 3, 4, 1, 6, 1, 4, 9, 2, 1, 4, 7, 10, 3, 4, 1, 18, 15, 8, 3, 2, 1, 4, 1, 2, 3, 16, 5, 6, 1, 4, 3, 10, 1, 6, 1, 2, 15, 4, 17, 6, 1, 4, 27, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS It suffices to check all bases 0 < b < n for n > 2. The congruence n == a(n) (mod A002322(n)) is always true. a(n) = 1 iff n is a prime or a Carmichael number. We have a(n) > 0 for n > 1, and a(n) <= n/2. If n > 2 then a(n) is odd iff n is odd. Conjecture: a(n) <= n/3 for every n >= 9. Professor Andrzej Schinzel proved this conjecture (in a letter to the author). - Thomas Ordowski, Sep 30 2016 Note: a(n) = n/3 for n = A038754 >= 3. Numbers n such that a(n) > A270096(n) are 8, 32, 56, 64, 96, 128, 144, 155, 170, 176, 192, 196, 204, 215, 221, 224, 238, 248, 255, 256, 272, 288, 320, 322, 336, 341, 352, 368, 372, 374, 384, 432, 448, 465, 476, ... - Altug Alkan, Sep 23 2016 Information from Carl Pomerance: a(n) > A002322(n) if and only if 8|n and n is in A050990; such n = 8, 24, 56, ... - Thomas Ordowski, Jun 21 2017 Number of integers k < n such that b^k == b^n (mod n) for every integer b is f(n) = (n - a(n))/lambda(n). For n > 1, f(n) = floor((n-1)/lambda(n)) if and only if a(n) <= lambda(n), where lambda(n) = A002322(n). - Thomas Ordowski, Jun 21 2017 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 FORMULA a(p) = 1 for prime p. a(2*p) = 2 for prime p. a(3*p) = 3 for odd prime p. a(p^k) = p^(k-1) for odd prime p and k >= 1. a(2*p^k) = 2*p^(k-1) for odd prime p and k >= 1. a(2^k) = 2^(k-2) for k >= 4. From Thomas Ordowski, Jul 09 2017: (Start) Full description of the function: a(n) = lambda(n) if lambda(n)|n except n = 1, 8, and 24; a(n) = lambda(n)+2 if lambda(n)|(n-2) and 8|n; a(n) = n mod lambda(n) otherwise; where lambda(n) = A002322(n). (End) MATHEMATICA With[{nn = 83}, Table[SelectFirst[Range[nn/4 + 10], Function[m, AllTrue[Range[2, n - 1], PowerMod[#, m , n] == PowerMod[#, n , n] &]]] - Boole[n == 1], {n, nn}]] (* Michael De Vlieger, Aug 15 2017 *) PROG (PARI) a(n)=if(n<3, return(n-1)); forstep(m=1, n, n%2+1, for(b=0, n-1, if(Mod(b, n)^m-Mod(b, n)^n, next(2))); return(m)) \\ Charles R Greathouse IV, Sep 23 2016 CROSSREFS Cf. A002322, A002997, A038754, A050990, A124240, A219175, A270096. Sequence in context: A060805 A184342 A030767 * A135545 A123317 A231557 Adjacent sequences:  A276973 A276974 A276975 * A276977 A276978 A276979 KEYWORD nonn,nice AUTHOR Thomas Ordowski, Sep 23 2016 EXTENSIONS More terms from Altug Alkan, Sep 23 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 14:44 EDT 2019. Contains 328318 sequences. (Running on oeis4.)