login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276976
Smallest m such that b^m == b^n (mod n) for every integer b.
7
0, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 4, 5, 2, 9, 4, 1, 2, 1, 8, 3, 2, 11, 6, 1, 2, 3, 4, 1, 6, 1, 4, 9, 2, 1, 4, 7, 10, 3, 4, 1, 18, 15, 8, 3, 2, 1, 4, 1, 2, 3, 16, 5, 6, 1, 4, 3, 10, 1, 6, 1, 2, 15, 4, 17, 6, 1, 4, 27, 2, 1
OFFSET
1,4
COMMENTS
It suffices to check all bases 0 < b < n for n > 2.
The congruence n == a(n) (mod A002322(n)) is always true.
a(n) = 1 iff n is a prime or a Carmichael number.
We have a(n) > 0 for n > 1, and a(n) <= n/2.
If n > 2 then a(n) is odd iff n is odd.
Conjecture: a(n) <= n/3 for every n >= 9.
Professor Andrzej Schinzel proved this conjecture (in a letter to the author). - Thomas Ordowski, Sep 30 2016
Note: a(n) = n/3 for n = A038754 >= 3.
Numbers n such that a(n) > A270096(n) are A290960.
Information from Carl Pomerance: a(n) > A002322(n) if and only if 8|n and n is in A050990; such n = 8, 24, 56, ... - Thomas Ordowski, Jun 21 2017
Number of integers k < n such that b^k == b^n (mod n) for every integer b is f(n) = (n - a(n))/lambda(n). For n > 1, f(n) = floor((n-1)/lambda(n)) if and only if a(n) <= lambda(n), where lambda(n) = A002322(n). - Thomas Ordowski, Jun 21 2017
a(n) >= A051903(n); numbers n such that a(n) = A051903(n) are 1, primes, Carmichael numbers, and A327295. - Thomas Ordowski, Dec 06 2019
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(p) = 1 for prime p.
a(2*p) = 2 for prime p.
a(3*p) = 3 for odd prime p.
a(p^k) = p^(k-1) for odd prime p and k >= 1.
a(2*p^k) = 2*p^(k-1) for odd prime p and k >= 1.
a(2^k) = 2^(k-2) for k >= 4.
From Thomas Ordowski, Jul 09 2017: (Start)
Full description of the function:
a(n) = lambda(n) if lambda(n)|n except n = 1, 8, and 24;
a(n) = lambda(n)+2 if lambda(n)|(n-2) and 8|n;
a(n) = n mod lambda(n) otherwise;
where lambda(n) = A002322(n). (End)
For n <> 8 and 24, a(n) = A(n) if A(n) >= A051903(n) or a(n) = A002322(n) + A(n) otherwise, where A(n) = A219175(n). - Thomas Ordowski, Nov 30 2019
MATHEMATICA
With[{nn = 83}, Table[SelectFirst[Range[nn/4 + 10], Function[m, AllTrue[Range[2, n - 1], PowerMod[#, m , n] == PowerMod[#, n , n] &]]] - Boole[n == 1], {n, nn}]] (* Michael De Vlieger, Aug 15 2017 *)
a[1] = 0; a[8] = a[24] = 4; a[n_] := If[(rem = Mod[n, (lam = CarmichaelLambda[n])]) >= Max @@ Last /@ FactorInteger[n], rem, rem + lam]; Array[a, 100] (* Amiram Eldar, Nov 30 2019 *)
PROG
(PARI) a(n)=if(n<3, return(n-1)); forstep(m=1, n, n%2+1, for(b=0, n-1, if(Mod(b, n)^m-Mod(b, n)^n, next(2))); return(m)) \\ Charles R Greathouse IV, Sep 23 2016
(Python) def a(n): return next(m for m in range(0, n+1) if all(pow(b, m, n)==pow(b, n, n) for b in range(1, 2*n+1))) # Nicholas Stefan Georgescu, Jun 03 2022
KEYWORD
nonn,nice
AUTHOR
Thomas Ordowski, Sep 23 2016
EXTENSIONS
More terms from Altug Alkan, Sep 23 2016
STATUS
approved