login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276975
Number of permutations of [n] such that the minimal distance between elements of the same cycle equals one, a(1)=1 by convention.
5
1, 1, 4, 19, 103, 651, 4702, 38413, 350559, 3539511, 39196758, 472612883, 6165080443, 86526834271, 1300282224846, 20832761552453, 354515666646827, 6386139146435035, 121406489336263622, 2429193186525638435, 51030147426536745655, 1122952442325988152627
OFFSET
1,3
LINKS
Per Alexandersson et al., d-regular partitions and permutations, MathOverflow, 2014
EXAMPLE
a(2) = 1: (1,2).
a(3) = 4: (1,2,3), (1,3,2), (1)(2,3), (1,2)(3).
MAPLE
b:= proc(n, i, l) option remember; `if`(n=0, mul(j!, j=l),
(m-> add(`if`(i=j, 0, b(n-1, j, `if`(j>m, [l[], 0],
subsop(j=l[j]+1, l)))), j=1..m+1))(nops(l)))
end:
a:= n-> `if`(n=1, 1, n!-b(n, 0, [])):
seq(a(n), n=1..15);
MATHEMATICA
b[n_, i_, l_] := b[n, i, l] = If[n == 0, Product[j!, {j, l}], Function[m, Sum[If[i == j, 0, b[n - 1, j, If[j > m, Append[l, 0], ReplacePart[l, j -> l[[j]] + 1]]]], {j, 1, m + 1}]][Length[l]]];
a[n_] := If[n == 1, 1, n! - b[n, 0, {}]];
Array[a, 15] (* Jean-François Alcover, Oct 28 2020, after Maple code *)
CROSSREFS
Column k=1 of A276974.
Sequence in context: A078940 A110531 A367808 * A178302 A292098 A186997
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 23 2016
STATUS
approved