login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078940
Row sums of A078938.
11
1, 4, 19, 103, 622, 4117, 29521, 227290, 1865881, 16239523, 149142952, 1439618143, 14555631781, 153700654036, 1690684883191, 19328770917499, 229203640111870, 2814018686591089, 35711716110387589, 467766675528462562
OFFSET
0,2
COMMENTS
Divide by 3^n and insert an initial 1 to get sequence that shifts left one place under 1/3 order binomial transformation. - Franklin T. Adams-Watters, Jul 13 2006
Binomial transform of A027710. - Vaclav Kotesovec, Jun 26 2022
LINKS
FORMULA
E.g.f.: exp(3*(exp(x)-1)+x).
Stirling transform of [1, 3, 3^2, 3^3, ...]. - Gerald McGarvey, Jun 01 2005
Define f_1(x), f_2(x), ... such that f_1(x)=e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n)=e^{-3}*f_n(3). - Milan Janjic, May 30 2008
G.f.: 1/T(0), where T(k) = 1 - (k+4)*x - 3*(k+1)*x^2/T(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2016
a(n) = exp(-3) * Sum_{k>=0} (k + 1)^n * 3^k / k!. - Ilya Gutkovskiy, Apr 20 2020
a(n) ~ n^(n+1) * exp(n/LambertW(n/3) - n - 3) / (3 * sqrt(1 + LambertW(n/3)) * LambertW(n/3)^(n+1)). - Vaclav Kotesovec, Jun 26 2022
a(0) = 1; a(n) = a(n-1) + 3 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Dec 05 2023
MAPLE
A078940 := proc(n) local a, b, i;
a := [seq(2, i=1..n)]; b := [seq(1, i=1..n)];
exp(-x)*hypergeom(a, b, x); round(evalf(subs(x=3, %), 66)) end:
seq(A078940(n), n=0..19); # Peter Luschny, Mar 30 2011
MATHEMATICA
Table[n!, {n, 0, 20}]CoefficientList[Series[E^(3E^x-3+x), {x, 0, 20}], x]
Table[1/E^3/3*Sum[m^n/m!*3^m, {m, 0, Infinity}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 12 2014 *)
Table[BellB[n+1, 3]/3, {n, 0, 20}] (* Vaclav Kotesovec, Jan 15 2016 *)
nmax = 20; Clear[g]; g[nmax+1] = 1; g[k_] := g[k] = 1 - (k+4)*x - 3*(k+1)*x^2/g[k+1]; CoefficientList[Series[1/g[0], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 15 2016, after Sergei N. Gladkovskii *)
CROSSREFS
Column k=3 of A335975.
Sequence in context: A188675 A199876 A225029 * A110531 A367808 A276975
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 18 2002
EXTENSIONS
More terms from Robert G. Wilson v, Dec 19 2002
STATUS
approved