The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078940 Row sums of A078938. 11
 1, 4, 19, 103, 622, 4117, 29521, 227290, 1865881, 16239523, 149142952, 1439618143, 14555631781, 153700654036, 1690684883191, 19328770917499, 229203640111870, 2814018686591089, 35711716110387589, 467766675528462562 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Divide by 3^n and insert an initial 1 to get sequence that shifts left one place under 1/3 order binomial transformation. - Franklin T. Adams-Watters, Jul 13 2006 Binomial transform of A027710. - Vaclav Kotesovec, Jun 26 2022 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA E.g.f.: exp(3*(exp(x)-1)+x). Stirling transform of [1, 3, 3^2, 3^3, ...]. - Gerald McGarvey, Jun 01 2005 Define f_1(x), f_2(x), ... such that f_1(x)=e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n)=e^{-3}*f_n(3). - Milan Janjic, May 30 2008 G.f.: 1/T(0), where T(k) = 1 - (k+4)*x - 3*(k+1)*x^2/T(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2016 a(n) = exp(-3) * Sum_{k>=0} (k + 1)^n * 3^k / k!. - Ilya Gutkovskiy, Apr 20 2020 a(n) ~ n^(n+1) * exp(n/LambertW(n/3) - n - 3) / (3 * sqrt(1 + LambertW(n/3)) * LambertW(n/3)^(n+1)). - Vaclav Kotesovec, Jun 26 2022 a(0) = 1; a(n) = a(n-1) + 3 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Dec 05 2023 MAPLE A078940 := proc(n) local a, b, i; a := [seq(2, i=1..n)]; b := [seq(1, i=1..n)]; exp(-x)*hypergeom(a, b, x); round(evalf(subs(x=3, %), 66)) end: seq(A078940(n), n=0..19); # Peter Luschny, Mar 30 2011 MATHEMATICA Table[n!, {n, 0, 20}]CoefficientList[Series[E^(3E^x-3+x), {x, 0, 20}], x] Table[1/E^3/3*Sum[m^n/m!*3^m, {m, 0, Infinity}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 12 2014 *) Table[BellB[n+1, 3]/3, {n, 0, 20}] (* Vaclav Kotesovec, Jan 15 2016 *) nmax = 20; Clear[g]; g[nmax+1] = 1; g[k_] := g[k] = 1 - (k+4)*x - 3*(k+1)*x^2/g[k+1]; CoefficientList[Series[1/g[0], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 15 2016, after Sergei N. Gladkovskii *) CROSSREFS Column k=3 of A335975. Cf. A027710, A035009, A078938, A078945, A355254. Sequence in context: A188675 A199876 A225029 * A110531 A367808 A276975 Adjacent sequences: A078937 A078938 A078939 * A078941 A078942 A078943 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 18 2002 EXTENSIONS More terms from Robert G. Wilson v, Dec 19 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 10 21:37 EDT 2024. Contains 375795 sequences. (Running on oeis4.)