The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A355254 Expansion of e.g.f. exp(3*(exp(x) - 1) - x). 2
 1, 2, 7, 29, 142, 785, 4813, 32240, 233449, 1812161, 14980768, 131174939, 1211111629, 11745451658, 119255234371, 1264050651953, 13952113296766, 160006824960725, 1902825936046105, 23423342243273696, 297982102750214605, 3911917977005948453, 52926119656555824520 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Inverse binomial transform of A027710. In general, if m >= 1 and e.g.f. = exp(m*exp(x) + r*x + s) then a(n) ~ n^(n+r) * exp(n/LambertW(n/m) - n + s) / (m^r * sqrt(1 + LambertW(n/m)) * LambertW(n/m)^(n+r)). Equivalently, a(n) ~ n! * (n/m)^r * exp(n/LambertW(n/m) + s) / (sqrt(2*Pi*n * (1 + LambertW(n/m))) * LambertW(n/m)^(n+r)). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..545 FORMULA a(n) ~ 3 * n^(n-1) * exp(n/LambertW(n/3) - n - 3) / (sqrt(1 + LambertW(n/3)) * LambertW(n/3)^(n-1)). a(0) = 1; a(n) = -a(n-1) + 3 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k). - Ilya Gutkovskiy, Dec 04 2023 MATHEMATICA nmax = 25; CoefficientList[Series[Exp[3*Exp[x]-3-x], {x, 0, nmax}], x] * Range[0, nmax]! PROG (PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(3*(exp(x) - 1) - x))) \\ Michel Marcus, Dec 04 2023 CROSSREFS Cf. A000296, A027710, A078940, A217924. Sequence in context: A190736 A265000 A347431 * A030849 A185109 A030973 Adjacent sequences: A355251 A355252 A355253 * A355255 A355256 A355257 KEYWORD nonn,changed AUTHOR Vaclav Kotesovec, Jun 26 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 21:43 EST 2023. Contains 367616 sequences. (Running on oeis4.)