OFFSET
0,3
COMMENTS
The inverse binomial transform of a(n) is A194689.
A087981(n) = Sum_{k=0..n} (-1)^k*s(n+1,k+1)*a(k);
|A000023(n)| = |Sum_{k=0..n} (-1)^(n-k)*s(n,k)*a(k)|
where s(n,k) are the unsigned Stirling numbers of first kind.
a(n) is the number of inequivalent set partitions of {1,2,...,n} where two blocks are considered equivalent when one can be obtained from the other by an alternating (even) permutation. - Geoffrey Critzer, Mar 17 2013
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..556
FORMULA
G.f.: 1/Q(0) where Q(k) = 1 + x*k - x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 06 2013
E.g.f.: exp(2*exp(x) - x - 2). - Geoffrey Critzer, Mar 17 2013
G.f.: 1/Q(0), where Q(k) = 1 - (k+1)*x - 2*(k+1)*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: T(0)/(1-x), where T(k) = 1 - 2*x^2*(k+1)/( 2*x^2*(k+1) - (1-x-x*k)*(1-2*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 19 2013
a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(n,k-j)*2^j*(-1)^(k-j)*Stirling2(n-k+j,j). - Vladimir Kruchinin, Feb 28 2015
a(n) = exp(-2) * Sum_{k>=0} 2^k * (k - 1)^n / k!. - Ilya Gutkovskiy, Jun 27 2020
Conjecture: a(n) = Sum_{k=0..2^n-1} A372205(k). - Mikhail Kurkov, Nov 21 2021 [Rewritten by Peter Luschny, Apr 22 2024]
a(n) ~ 2 * n^(n-1) * exp(n/LambertW(n/2) - n - 2) / (sqrt(1 + LambertW(n/2)) * LambertW(n/2)^(n-1)). - Vaclav Kotesovec, Jun 26 2022
EXAMPLE
a(3)=9 because we have: {1,2,3}; {1,3,2}; {1}{2,3}; {1}{3,2}; {2}{1,3}; {2}{3,1}; {3}{1,2}; {3}{2,1}; {1}{2}{3}. - Geoffrey Critzer, Mar 17 2013
MAPLE
egf := exp(2*exp(x) - x - 2): ser := series(egf, x, 25):
seq(n!*coeff(ser, x, n), n = 0..23); # Peter Luschny, Apr 22 2024
MATHEMATICA
nn=23; Range[0, nn]!CoefficientList[Series[Exp[2 Exp[x]-x-2], {x, 0, nn}], x] (* Geoffrey Critzer, Mar 17 2013 *)
nmax = 25; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-2*k*x^2 , 1 - (k + 1)*x, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 25 2017 *)
PROG
(Sage)
def A217924_list(n):
T = A217537_triangle(n)
return [add(T.row(n)) for n in range(n)]
A217924_list(24)
(Maxima)
a(n):=sum(sum(binomial(n, k-j)*2^j*(-1)^(k-j)*stirling2(n-k+j, j), j, 0, k), k, 0, n); /* Vladimir Kruchinin, Feb 28 2015 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Oct 15 2012
EXTENSIONS
Name extended by a formula of Geoffrey Critzer by Peter Luschny, Apr 22 2024
STATUS
approved