login
A217924
a(n) = n! * [x^n] exp(2*exp(x) - x - 2). Row sums of triangle A217537.
12
1, 1, 3, 9, 35, 153, 755, 4105, 24323, 155513, 1064851, 7760745, 59895203, 487397849, 4166564147, 37298443977, 348667014723, 3395240969785, 34365336725715, 360837080222761, 3923531021460707, 44108832866004121, 511948390801374835, 6126363766802713481
OFFSET
0,3
COMMENTS
The inverse binomial transform of a(n) is A194689.
A087981(n) = Sum_{k=0..n} (-1)^k*s(n+1,k+1)*a(k);
|A000023(n)| = |Sum_{k=0..n} (-1)^(n-k)*s(n,k)*a(k)|
where s(n,k) are the unsigned Stirling numbers of first kind.
a(n) is the number of inequivalent set partitions of {1,2,...,n} where two blocks are considered equivalent when one can be obtained from the other by an alternating (even) permutation. - Geoffrey Critzer, Mar 17 2013
LINKS
FORMULA
G.f.: 1/Q(0) where Q(k) = 1 + x*k - x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 06 2013
E.g.f.: exp(2*exp(x) - x - 2). - Geoffrey Critzer, Mar 17 2013
G.f.: 1/Q(0), where Q(k) = 1 - (k+1)*x - 2*(k+1)*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: T(0)/(1-x), where T(k) = 1 - 2*x^2*(k+1)/( 2*x^2*(k+1) - (1-x-x*k)*(1-2*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 19 2013
a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(n,k-j)*2^j*(-1)^(k-j)*Stirling2(n-k+j,j). - Vladimir Kruchinin, Feb 28 2015
a(n) = exp(-2) * Sum_{k>=0} 2^k * (k - 1)^n / k!. - Ilya Gutkovskiy, Jun 27 2020
Conjecture: a(n) = Sum_{k=0..2^n-1} A372205(k). - Mikhail Kurkov, Nov 21 2021 [Rewritten by Peter Luschny, Apr 22 2024]
a(n) ~ 2 * n^(n-1) * exp(n/LambertW(n/2) - n - 2) / (sqrt(1 + LambertW(n/2)) * LambertW(n/2)^(n-1)). - Vaclav Kotesovec, Jun 26 2022
EXAMPLE
a(3)=9 because we have: {1,2,3}; {1,3,2}; {1}{2,3}; {1}{3,2}; {2}{1,3}; {2}{3,1}; {3}{1,2}; {3}{2,1}; {1}{2}{3}. - Geoffrey Critzer, Mar 17 2013
MAPLE
egf := exp(2*exp(x) - x - 2): ser := series(egf, x, 25):
seq(n!*coeff(ser, x, n), n = 0..23); # Peter Luschny, Apr 22 2024
MATHEMATICA
nn=23; Range[0, nn]!CoefficientList[Series[Exp[2 Exp[x]-x-2], {x, 0, nn}], x] (* Geoffrey Critzer, Mar 17 2013 *)
nmax = 25; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-2*k*x^2 , 1 - (k + 1)*x, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 25 2017 *)
PROG
(Sage)
def A217924_list(n):
T = A217537_triangle(n)
return [add(T.row(n)) for n in range(n)]
A217924_list(24)
(Maxima)
a(n):=sum(sum(binomial(n, k-j)*2^j*(-1)^(k-j)*stirling2(n-k+j, j), j, 0, k), k, 0, n); /* Vladimir Kruchinin, Feb 28 2015 */
CROSSREFS
Similar recurrences: A124758, A243499, A284005, A329369, A341392, A372205.
Sequence in context: A335642 A327885 A074507 * A030268 A097277 A034428
KEYWORD
nonn
AUTHOR
Peter Luschny, Oct 15 2012
EXTENSIONS
Name extended by a formula of Geoffrey Critzer by Peter Luschny, Apr 22 2024
STATUS
approved