login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327885
Number of set partitions of [n] such that at least one of the block sizes is 2.
3
0, 0, 1, 3, 9, 35, 150, 672, 3269, 17271, 97155, 578985, 3654750, 24331320, 170074177, 1244911605, 9520843575, 75890001665, 629104453236, 5413637745144, 48277814341765, 445463898405225, 4246785220234557, 41775507558584283, 423516880995944532
OFFSET
0,4
LINKS
FORMULA
E.g.f.: exp(exp(x)-1) - exp(exp(x)-1-x^2/2).
a(n) = A000110(n) - A097514(n).
EXAMPLE
a(2) = 1: 12.
a(3) = 3: 12|3, 13|2, 1|23.
a(4) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
a(5) = 35: 123|45, 124|35, 125|34, 12|345, 12|34|5, 12|35|4, 12|3|45, 12|3|4|5, 134|25, 135|24, 13|245, 13|24|5, 13|25|4, 13|2|45, 13|2|4|5, 145|23, 14|235, 14|23|5, 15|234, 15|23|4, 1|23|45, 1|23|4|5, 14|25|3, 14|2|35, 14|2|3|5, 15|24|3, 1|24|35, 1|24|3|5, 15|2|34, 1|25|34, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45.
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, add(
`if`(j=k, 0, b(n-j, k)*binomial(n-1, j-1)), j=1..n))
end:
a:= n-> b(n, 0)-b(n, 2):
seq(a(n), n=0..27);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[If[j == k, 0, b[n - j, k]* Binomial[n - 1, j - 1]], {j, n}]];
a[n_] := b[n, 0] - b[n, 2];
a /@ Range[0, 27] (* Jean-François Alcover, May 04 2020, after Maple *)
CROSSREFS
Column k=2 of A327884.
Sequence in context: A369389 A225041 A335642 * A074507 A217924 A030268
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 28 2019
STATUS
approved