login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n! * [x^n] exp(2*exp(x) - x - 2). Row sums of triangle A217537.
11

%I #59 Apr 25 2024 13:27:01

%S 1,1,3,9,35,153,755,4105,24323,155513,1064851,7760745,59895203,

%T 487397849,4166564147,37298443977,348667014723,3395240969785,

%U 34365336725715,360837080222761,3923531021460707,44108832866004121,511948390801374835,6126363766802713481

%N a(n) = n! * [x^n] exp(2*exp(x) - x - 2). Row sums of triangle A217537.

%C The inverse binomial transform of a(n) is A194689.

%C A087981(n) = Sum_{k=0..n} (-1)^k*s(n+1,k+1)*a(k);

%C |A000023(n)| = |Sum_{k=0..n} (-1)^(n-k)*s(n,k)*a(k)|

%C where s(n,k) are the unsigned Stirling numbers of first kind.

%C a(n) is the number of inequivalent set partitions of {1,2,...,n} where two blocks are considered equivalent when one can be obtained from the other by an alternating (even) permutation. - _Geoffrey Critzer_, Mar 17 2013

%H Vaclav Kotesovec, <a href="/A217924/b217924.txt">Table of n, a(n) for n = 0..556</a>

%F G.f.: 1/Q(0) where Q(k) = 1 + x*k - x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Mar 06 2013

%F E.g.f.: exp(2*exp(x) - x - 2). - _Geoffrey Critzer_, Mar 17 2013

%F G.f.: 1/Q(0), where Q(k) = 1 - (k+1)*x - 2*(k+1)*x^2/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, May 03 2013

%F G.f.: T(0)/(1-x), where T(k) = 1 - 2*x^2*(k+1)/( 2*x^2*(k+1) - (1-x-x*k)*(1-2*x-x*k)/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 19 2013

%F a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(n,k-j)*2^j*(-1)^(k-j)*Stirling2(n-k+j,j). - _Vladimir Kruchinin_, Feb 28 2015

%F a(n) = exp(-2) * Sum_{k>=0} 2^k * (k - 1)^n / k!. - _Ilya Gutkovskiy_, Jun 27 2020

%F Conjecture: a(n) = Sum_{k=0..2^n-1} A372205(k). - _Mikhail Kurkov_, Nov 21 2021 [Rewritten by _Peter Luschny_, Apr 22 2024]

%F a(n) ~ 2 * n^(n-1) * exp(n/LambertW(n/2) - n - 2) / (sqrt(1 + LambertW(n/2)) * LambertW(n/2)^(n-1)). - _Vaclav Kotesovec_, Jun 26 2022

%e a(3)=9 because we have: {1,2,3}; {1,3,2}; {1}{2,3}; {1}{3,2}; {2}{1,3}; {2}{3,1}; {3}{1,2}; {3}{2,1}; {1}{2}{3}. - _Geoffrey Critzer_, Mar 17 2013

%p egf := exp(2*exp(x) - x - 2): ser := series(egf, x, 25):

%p seq(n!*coeff(ser, x, n), n = 0..23); # _Peter Luschny_, Apr 22 2024

%t nn=23;Range[0,nn]!CoefficientList[Series[Exp[2 Exp[x]-x-2],{x,0,nn}],x] (* _Geoffrey Critzer_, Mar 17 2013 *)

%t nmax = 25; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-2*k*x^2 , 1 - (k + 1)*x, {k, 1, nmax}]), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 25 2017 *)

%o (Sage)

%o def A217924_list(n):

%o T = A217537_triangle(n)

%o return [add(T.row(n)) for n in range(n)]

%o A217924_list(24)

%o (Maxima)

%o a(n):=sum(sum(binomial(n,k-j)*2^j*(-1)^(k-j)*stirling2(n-k+j,j),j,0,k),k,0,n); /* _Vladimir Kruchinin_, Feb 28 2015 */

%Y Similar recurrences: A124758, A243499, A284005, A329369, A341392, A372205.

%K nonn

%O 0,3

%A _Peter Luschny_, Oct 15 2012

%E Name extended by a formula of _Geoffrey Critzer_ by _Peter Luschny_, Apr 22 2024