login
A217537
Triangle read by rows, T(n,k) = T(n-1,k-1) + k*T(n-1,k) + (k+1)*T(n-1,k+1), T(0,0) = 1, n >= 0, k >= 0.
1
1, 0, 1, 1, 1, 1, 1, 4, 3, 1, 4, 11, 13, 6, 1, 11, 41, 55, 35, 10, 1, 41, 162, 256, 200, 80, 15, 1, 162, 715, 1274, 1176, 595, 161, 21, 1, 715, 3425, 6791, 7182, 4361, 1526, 294, 28, 1, 3425, 17722, 38553, 45781, 32256, 13755, 3486, 498, 36, 1, 17722, 98253
OFFSET
1,8
COMMENTS
Related to set partitions without singletons, T(n,0) = A000296(n).
FORMULA
From Mélika Tebni, Mar 26 2022: (Start)
E.g.f. column k: exp(exp(x) - 1 - x)*(exp(x) - 1)^k / k!, k >= 0.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n. (End)
EXAMPLE
[0] 1,
[1] 0, 1,
[2] 1, 1, 1,
[3] 1, 4, 3, 1,
[4] 4, 11, 13, 6, 1,
[5] 11, 41, 55, 35, 10, 1,
[6] 41, 162, 256, 200, 80, 15, 1,
[7] 162, 715, 1274, 1176, 595, 161, 21, 1,
[8] 715, 3425, 6791, 7182, 4361, 1526, 294, 28, 1
MATHEMATICA
T[0, 0] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + k*T[n - 1, k] + (k + 1)*T[n - 1, k + 1]; T[_, _] = 0;
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
PROG
(Sage)
def A217537_triangle(dim):
T = matrix(ZZ, dim, dim)
for n in range(dim): T[n, n] = 1
for n in (1..dim-1):
for k in (0..n-1):
T[n, k] = T[n-1, k-1]+k*T[n-1, k]+(k+1)*T[n-1, k+1]
return T
A217537_triangle(9)
CROSSREFS
Row sums are A217924, A000296 (first column).
Sequence in context: A016499 A295677 A066204 * A154278 A220451 A020839
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Oct 06 2012
STATUS
approved