login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217534 a(n) = (n+3)^n - (3^n + 4^n + ... + (n+2)^n). 0
0, 0, 143, 3793, 84542, 1919704, 46627805, 1227528189, 35089362124, 1086720416752, 36332383035835, 1306095900888769, 50286217183755898, 2065817586807684432, 90239163524054501433, 4178002289972230821853, 204427003853886843251976, 10542316523726438001918616 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,3
COMMENTS
The first two terms of the series illustrate the famous equalities 3^2 + 4^2 = 5^2 and 3^3 + 4^3 + 5^3 = 6^3. The following terms show how this eventually diverges.
LINKS
Wikipedia, Number 143
FORMULA
a(n) = (n+3)^n - Sum_{k=3..n+2} k^n.
a(n) ~ k*n^n, where k = e^3/(e-1). - Charles R Greathouse IV, Oct 08 2012
MAPLE
a:= n-> (n+3)^n -add(k^n, k=3..n+2):
seq (a(n), n=2..20); # Alois P. Heinz, Oct 08 2012
MATHEMATICA
a[n_] := (n+3)^n + 2^n - HarmonicNumber[n+2, -n] + 1; Table[a[n], {n, 2, 20}] (* Jean-François Alcover, Feb 17 2014 *)
Table[(n+3)^n-Total[Range[3, n+2]^n], {n, 2, 20}] (* Harvey P. Dale, Sep 22 2019 *)
PROG
(PARI) a(n)=(n+3)^n-sum(k=3, n+2, k^n) \\ Charles R Greathouse IV, Oct 08 2012
CROSSREFS
Sequence in context: A220292 A159054 A135946 * A279115 A199039 A199235
KEYWORD
nonn
AUTHOR
Philippe Beaudoin, Oct 05 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 23:37 EST 2023. Contains 367681 sequences. (Running on oeis4.)