login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295677
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 1, a(2) = 4, a(3) = -3.
1
1, 1, 4, -3, -1, 4, 5, 1, 4, 13, 19, 24, 41, 73, 116, 181, 295, 484, 781, 1257, 2036, 3301, 5339, 8632, 13969, 22609, 36580, 59181, 95759, 154948, 250709, 405649, 656356, 1062013, 1718371, 2780376, 4498745, 7279129, 11777876, 19056997, 30834871, 49891876
OFFSET
0,3
COMMENTS
Lim_{n->inf} a(n)/a(n-1) = (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
FORMULA
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 1, a(2) = 4, a(3) = -3.
G.f.: (-1 - 3 x^2 + 8 x^3)/(-1 + x + x^3 + x^4).
MATHEMATICA
LinearRecurrence[{1, 0, 1, 1}, {1, 1, 4, -3}, 100]
CROSSREFS
Sequence in context: A130806 A200490 A016499 * A066204 A217537 A154278
KEYWORD
easy,sign
AUTHOR
Clark Kimberling, Nov 27 2017
STATUS
approved