login
A295676
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 1, a(2) = 3, a(3) = -3.
1
1, 1, 3, -3, -1, 3, 3, -1, 1, 7, 9, 9, 17, 33, 51, 77, 127, 211, 339, 543, 881, 1431, 2313, 3737, 6049, 9793, 15843, 25629, 41471, 67107, 108579, 175679, 284257, 459943, 744201, 1204137, 1948337, 3152481, 5100819, 8253293, 13354111, 21607411, 34961523
OFFSET
0,3
COMMENTS
Lim_{n->inf} a(n)/a(n-1) = (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
FORMULA
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 1, a(2) = 3, a(3) = -3.
G.f.: (-1 - 2 x^2 + 7 x^3)/(-1 + x + x^3 + x^4).
MATHEMATICA
LinearRecurrence[{1, 0, 1, 1}, {1, 1, 3, -3}, 100]
CROSSREFS
Sequence in context: A101988 A200606 A293862 * A088420 A103585 A154595
KEYWORD
easy,sign
AUTHOR
Clark Kimberling, Nov 27 2017
STATUS
approved