

A088420


Number of primes in arithmetic progression starting with 3 and with d = 2n.


10



3, 3, 1, 3, 3, 1, 3, 2, 1, 3, 1, 1, 2, 3, 1, 1, 3, 1, 3, 3, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 1, 3, 1, 3, 2, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 3, 3, 1, 2, 2, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The arithmetic progression is stopped when the next term is not prime. E.g., for n=5, a=3, the numbers 3, 13, and 23 are prime, while the next term, 33, is not prime.
a(n) <= 3 because 3+3*d is divisible by 3.  Klaus Brockhaus, May 14 2009


LINKS

Table of n, a(n) for n=1..100.


PROG

(MAGMA) npap3:=function(d) c:=1; p:=3+d; while IsPrime(p) do c+:=1; p+:=d; end while; return c; end function; [ npap3(2*n): n in [1..105] ]; // Klaus Brockhaus, May 14 2009


CROSSREFS

Cf. A088421, A088422, A088423, A088424, A088425, A088426, A088427, A088428, A088429.
Cf. A115334.  Klaus Brockhaus, May 14 2009
Sequence in context: A200606 A293862 A295676 * A103585 A154595 A144437
Adjacent sequences: A088417 A088418 A088419 * A088421 A088422 A088423


KEYWORD

easy,nonn


AUTHOR

Zak Seidov, Sep 29 2003


STATUS

approved



