login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295679
Array read by antidiagonals: T(n,k) = k-Modular Catalan numbers C_{n,k} (n >= 0, k > 0).
8
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 5, 8, 1, 1, 1, 2, 5, 13, 16, 1, 1, 1, 2, 5, 14, 35, 32, 1, 1, 1, 2, 5, 14, 41, 96, 64, 1, 1, 1, 2, 5, 14, 42, 124, 267, 128, 1, 1, 1, 2, 5, 14, 42, 131, 384, 750, 256, 1, 1, 1, 2, 5, 14, 42, 132, 420, 1210, 2123, 512, 1
OFFSET
0,9
COMMENTS
Definition: Given a primitive k-th root of unity w, a binary operation a*b=a+wb, and sufficiently general fixed complex numbers x_0, ..., x_n, the k-modular Catalan numbers C_{n,k} enumerate parenthesizations of x_0*x_1*...*x_n that give distinct values.
Theorem: C_{n,k} enumerates the following objects:
(1) binary trees with n internal nodes avoiding a certain subtree (i.e., comb_k^{+1}),
(2) plane trees with n+1 nodes whose non-root nodes have degree less than k,
(3) Dyck paths of length 2n avoiding a down-step followed immediately by k consecutive up-steps,
(4) partitions with n nonnegative parts bounded by the staircase partition (n-1,n-2,...,1,0) such that each positive number appears fewer than k times,
(5) standard 2-by-n Young tableaux whose top row avoids contiguous labels of the form i,j+1,j+2,...,j+k for all i<j, and
(6) permutations of {1,2,...,n} avoiding 1-3-2 and 23...(k+1)1.
Columns of the array converge rowwise to A000108. The diagonal k=n-1 is A001453. - Andrey Zabolotskiy, Dec 02 2017
LINKS
Nickolas Hein, Jia Huang, Modular Catalan Numbers, European Journal of Combinatorics, 61 (2017), 197-218, arXiv:1508.01688 [math.CO], 2015-2016.
FORMULA
G.f. of column k: 1/(1-G(x)) where G(x) is the reversion of x*(1-x)/(1-x^k).
EXAMPLE
Array begins (n >= 0, k > 0):
======================================================
n\k| 1 2 3 4 5 6 7 8 9 10
---|--------------------------------------------------
0 | 1 1 1 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 1 1 1 ...
2 | 1 2 2 2 2 2 2 2 2 2 ...
3 | 1 4 5 5 5 5 5 5 5 5 ...
4 | 1 8 13 14 14 14 14 14 14 14 ...
5 | 1 16 35 41 42 42 42 42 42 42 ...
6 | 1 32 96 124 131 132 132 132 132 132 ...
7 | 1 64 267 384 420 428 429 429 429 429 ...
8 | 1 128 750 1210 1375 1420 1429 1430 1430 1430 ...
9 | 1 256 2123 3865 4576 4796 4851 4861 4862 4862 ...
...
MAPLE
A295679 := proc(n, k)
if n = 0 then
1;
else
add((-1)^j/n*binomial(n, j)*binomial(2*n-j*k, n+1), j=0..(n-1)/k) ;
end if ;
end proc:
seq(seq( A295679(n, d-n), n=0..d-1), d=1..12) ; # R. J. Mathar, Oct 14 2022
MATHEMATICA
rows = cols = 12;
col[k_] := Module[{G}, G = InverseSeries[x*(1-x)/(1-x^k) + O[x]^cols, x]; CoefficientList[1/(1 - G), x]];
A = Array[col, cols];
T[n_, k_] := A[[k, n+1]];
Table[T[n-k+1, k], {n, 0, rows-1}, {k, n+1, 1, -1}] // Flatten (* Jean-François Alcover, Dec 05 2017, adapted from PARI *)
PROG
(PARI)
T(n, k)=polcoeff(1/(1-serreverse(x*(1-x)/(1-x^k) + O(x^max(2, n+1)))), n);
for(n=0, 10, for(k=1, 10, print1(T(n, k), ", ")); print);
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Andrew Howroyd, Nov 30 2017
STATUS
approved