login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287216 Number A(n,k) of set partitions of [n] such that all absolute differences between least elements of consecutive blocks are <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals. 15
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 5, 9, 1, 1, 1, 2, 5, 14, 23, 1, 1, 1, 2, 5, 15, 44, 66, 1, 1, 1, 2, 5, 15, 51, 152, 210, 1, 1, 1, 2, 5, 15, 52, 191, 571, 733, 1, 1, 1, 2, 5, 15, 52, 202, 780, 2317, 2781, 1, 1, 1, 2, 5, 15, 52, 203, 857, 3440, 10096, 11378, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

Wikipedia, Partition of a set

FORMULA

A(n,k) = Sum_{j=0..k} A287215(n,j).

EXAMPLE

A(4,0) = 1: 1234.

A(4,1) = 9: 1234, 134|2, 13|24, 14|23, 1|234, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.

A(4,2) = 14: 1234, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.

A(5,1) = 23: 12345, 1345|2, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234, 1|2345, 145|2|3, 14|25|3, 14|2|35, 15|24|3, 1|245|3, 1|24|35, 15|2|34, 1|25|34, 1|2|345, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.

Square array A(n,k) begins:

  1,   1,   1,   1,   1,   1,   1,   1, ...

  1,   1,   1,   1,   1,   1,   1,   1, ...

  1,   2,   2,   2,   2,   2,   2,   2, ...

  1,   4,   5,   5,   5,   5,   5,   5, ...

  1,   9,  14,  15,  15,  15,  15,  15, ...

  1,  23,  44,  51,  52,  52,  52,  52, ...

  1,  66, 152, 191, 202, 203, 203, 203, ...

  1, 210, 571, 780, 857, 876, 877, 877, ...

MAPLE

b:= proc(n, k, m, l) option remember; `if`(n<1, 1,

     `if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l))

    end:

A:= (n, k)-> b(n-1, min(k, n-1), 1, n):

seq(seq(A(n, d-n), n=0..d), d=0..12);

MATHEMATICA

b[n_, k_, m_, l_] := b[n, k, m, l] = If[n < 1, 1, If[l - n > k, 0, b[n - 1, k, m + 1, n]] + m*b[n - 1, k, m, l]];

A[n_, k_] := b[n - 1, Min[k, n - 1], 1, n];

Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A000012, A026898(n-1) for n>0, A287252, A287253, A287254, A287255, A287256, A287257, A287258, A287259, A287260.

Main diagonal gives A000110.

Cf. A287214, A287215, A287417, A287641.

Sequence in context: A216656 A295679 A287214 * A145515 A267383 A332648

Adjacent sequences:  A287213 A287214 A287215 * A287217 A287218 A287219

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, May 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 06:12 EST 2022. Contains 350378 sequences. (Running on oeis4.)