login
A145515
Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of k^n into powers of k.
22
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 5, 10, 1, 1, 1, 2, 6, 23, 36, 1, 1, 1, 2, 7, 46, 239, 202, 1, 1, 1, 2, 8, 82, 1086, 5828, 1828, 1, 1, 1, 2, 9, 134, 3707, 79326, 342383, 27338, 1, 1, 1, 2, 10, 205, 10340, 642457, 18583582, 50110484, 692004, 1, 1, 1, 2, 11, 298, 24901, 3649346, 446020582, 14481808030, 18757984046, 30251722, 1, 1
OFFSET
0,8
LINKS
FORMULA
See program.
For k>1: A(n,k) = [x^(k^n)] 1/Product_{j>=0} (1-x^(k^j)).
EXAMPLE
A(2,3) = 5, because there are 5 partitions of 3^2=9 into powers of 3: [1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,3], [1,1,1,3,3], [3,3,3], [9].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 2, 2, ...
1, 1, 4, 5, 6, 7, ...
1, 1, 10, 23, 46, 82, ...
1, 1, 36, 239, 1086, 3707, ...
1, 1, 202, 5828, 79326, 642457, ...
MAPLE
b:= proc(n, j, k) local nn;
nn:= n+1;
if n<0 then 0
elif j=0 or n=0 or k<=1 then 1
elif j=1 then nn
elif n>=j then (nn-j) *binomial(nn, j) *add(binomial(j, h)
/(nn-j+h) *b(j-h-1, j, k) *(-1)^h, h=0..j-1)
else b(n, j, k):= b(n-1, j, k) +b(k*n, j-1, k)
fi
end:
A:= (n, k)-> b(1, n, k):
seq(seq(A(n, d-n), n=0..d), d=0..13);
MATHEMATICA
b[n_, j_, k_] := Module[{nn = n+1}, Which[n < 0, 0, j == 0 || n == 0 || k <= 1, 1, j == 1, nn, n >= j, (nn-j)*Binomial[nn, j]*Sum[Binomial[j, h]/(nn-j+h)* b[j-h-1, j, k]*(-1)^h, {h, 0, j-1}], True, b[n, j, k] = b[n-1, j, k] + b[k*n, j-1, k] ] ]; a[n_, k_] := b[1, n, k]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 13}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)
CROSSREFS
Row n=3 gives: A189890(k+1).
Main diagonal gives: A145514.
Cf. A007318.
Sequence in context: A295679 A287214 A287216 * A267383 A332648 A272896
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Oct 11 2008
EXTENSIONS
Edited by Alois P. Heinz, Jan 12 2011
STATUS
approved