login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111822
Number of partitions of 5^n into powers of 5, also equals the row sums of triangle A111820, which shifts columns left and up under matrix 5th power.
6
1, 2, 7, 82, 3707, 642457, 446020582, 1288155051832, 15905066118254957, 856874264098480364332, 204616369654716156089739332, 219286214391142987407272329973707, 1065403165201779499307991460987124895582, 23663347632778954225192551079067428619449114332
OFFSET
0,2
LINKS
FORMULA
a(n) = [x^(5^n)] 1/Product_{j>=0}(1-x^(5^j)).
PROG
(PARI) a(n, q=5)=local(A=Mat(1), B); if(n<0, 0, for(m=1, n+2, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i || j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return(sum(k=0, n, A[n+1, k+1])))
CROSSREFS
Cf. A111820, A002577 (q=2), A078125 (q=3), A078537 (q=4), A111827 (q=6), A111832 (q=7), A111837 (q=8).
Column k=5 of A145515.
Sequence in context: A263368 A208806 A319144 * A062764 A163855 A268299
KEYWORD
nonn
AUTHOR
STATUS
approved