login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111821
Number of partitions of 4*5^n into powers of 5, also equals column 1 of triangle A111820, which shifts columns left and up under matrix 5th power.
8
1, 5, 55, 2055, 291430, 165397680, 390075741430, 3927972221522680, 172358768282285194555, 33479766506261422878944555, 29150234311482124092454001991430
OFFSET
0,2
COMMENTS
Let q=5; a(n) equals the partitions of (q-1)*q^n into powers of q, or, the coefficient of x^((q-1)*q^n) in 1/Product_{j>=0}(1-x^(q^j)).
LINKS
FORMULA
a(n) = [x^(4*5^n)] 1/Product_{j>=0}(1-x^(5^j)).
PROG
(PARI) a(n, q=5)=local(A=Mat(1), B); if(n<0, 0, for(m=1, n+2, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i || j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return(A[n+2, 2]))
CROSSREFS
Cf. A111820 (triangle), A002577 (q=2), A078124 (q=3), A111817 (q=4), A111826 (q=6), A111831 (q=7), A111836 (q=8).
Sequence in context: A126157 A176267 A105715 * A275546 A068666 A082780
KEYWORD
nonn
AUTHOR
STATUS
approved