login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176267
a(n) = binomial(prime(n),s)/prime(n) where s is the sum of the decimal digits of prime(n).
1
5, 55, 1430, 4862, 1463, 1193010, 1015, 9414328, 18278, 749398, 370577311, 16723070, 225398683020, 7151980, 378683037040, 149846840, 8511300512, 272994644359580, 194480021970, 8516063242041795, 8175951659117794, 50, 42925, 3046258475, 391139588190, 1242164, 1646644081775, 2271776, 38642514470976, 4683175503770976
OFFSET
5,1
COMMENTS
Note that a(n) is always an integer, as binomial(p,s) = p! / ((p-s)!/s!) is always divisible by p for prime p because neither (p-s)! nor s! can contain a factor of p when 0 < s < p, which occurs when n >= 5. By contrast, for n < 5, p(n) < 10, the sum of digits is p(n) itself, and the result is 1/p(n).
EXAMPLE
For n = 6, prime(6) = 13, s = 1+3 = 4 and binomial(13, 4)/13 = 715/13 = 55.
MAPLE
A007605 := proc(n) A007953(ithprime(n)) ; end proc:
A176267 := proc(n) local p; p := ithprime(n) ; binomial(p, A007605(n))/p ; end proc:
seq(A176267(n), n=5..20) ;
MATHEMATICA
pn[n_]:=Module[{pr=Prime[n]}, Binomial[pr, Total[IntegerDigits[pr]]]/pr]; Array[pn, 40, 5] (* Harvey P. Dale, Mar 29 2012 *)
PROG
(Sage) A176267 = lambda n: binomial(nth_prime(n), sum(nth_prime(n).digits()))/nth_prime(n) # D. S. McNeil, Dec 08 2010
CROSSREFS
Sequence in context: A177819 A126456 A126157 * A105715 A111821 A275546
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Dec 07 2010
STATUS
approved