login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176264
Triangle T(n,k) = A015442(k) - A015442(n) + A015442(n-k) read by rows.
1
1, 1, 1, 1, -6, 1, 1, -6, -6, 1, 1, -55, -55, -55, 1, 1, -104, -153, -153, -104, 1, 1, -496, -594, -643, -594, -496, 1, 1, -1231, -1721, -1819, -1819, -1721, -1231, 1, 1, -4710, -5935, -6425, -6474, -6425, -5935, -4710, 1, 1, -13334, -18038, -19263, -19704, -19704, -19263, -18038, -13334, 1
OFFSET
0,5
COMMENTS
Row sums are s(n) = {1, 2, -4, -10, -163, -512, -2821, -9540, -40612, -140676, -537533, ...} where s(n) = 3*s(n-1) +11*s(n-2) -27*s(n-3) -35*s(n-4) +49*s(n-5) with g.f. (1-x-21*x^2+7*x^3)/((1-x)*(1-x-7*x^2)^2).
FORMULA
T(n,k) = T(n,n-k).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -6, 1;
1, -6, -6, 1;
1, -55, -55, -55, 1;
1, -104, -153, -153, -104, 1;
1, -496, -594, -643, -594, -496, 1;
1, -1231, -1721, -1819, -1819, -1721, -1231, 1;
1, -4710, -5935, -6425, -6474, -6425, -5935, -4710, 1;
1, -13334, -18038, -19263, -19704, -19704, -19263, -18038, -13334, 1;
1, -46311, -59639, -64343, -65519, -65911, -65519, -64343, -59639, -46311, 1;
MATHEMATICA
(* Set of sequences q=0..10 *)
f[n_, q_]:= f[n, q] = If[n<2, n, f[n-1, q] + q*f[n-2, q]];
T[n_, k_, q_]:= f[k+1, q] + f[n-k+1, q] - f[n+1, q];
Table[Flatten[Table[T[n, k, q], {n, 0, 10}, {k, 0, n}], {q, 0, 10}]
(* Second program *)
A015442[n_]:= Sum[7^j*Binomial[n-j, j], {j, 0, (n+1)/2}]; T[n_, k_]:= T[n, k]= A015442[k] +A015442[n-k] -A015442[n]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 24 2019 *)
PROG
(PARI) A015442(n) = sum(j=0, (n+1)\2, 7^j*binomial(n-j, j));
T(n, k) = A015442(k) - A015442(n) + A015442(n-k); \\ G. C. Greubel, Nov 24 2019
(Magma) A015442:= func< n | &+[7^j*Binomial(n-j, j): j in [0..Floor(n/2)]] >;
[A015442(k) - A015442(n) + A015442(n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 24 2019
(Sage)
def A015442(n): return sum(7^j*binomial(n-j, j) for j in (0..floor(n/2)))
[[A015442(k) - A015442(n) + A015442(n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 24 2019
CROSSREFS
Sequence in context: A095713 A138072 A176348 * A195397 A173741 A171147
KEYWORD
sign,tabl,easy
AUTHOR
Roger L. Bagula, Apr 13 2010
STATUS
approved