login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173741
T(n,k) = binomial(n,k) + 4 for 1 <= k <= n - 1, n >= 2, and T(n,0) = T(n,n) = 1 for n >= 0, triangle read by rows.
4
1, 1, 1, 1, 6, 1, 1, 7, 7, 1, 1, 8, 10, 8, 1, 1, 9, 14, 14, 9, 1, 1, 10, 19, 24, 19, 10, 1, 1, 11, 25, 39, 39, 25, 11, 1, 1, 12, 32, 60, 74, 60, 32, 12, 1, 1, 13, 40, 88, 130, 130, 88, 40, 13, 1, 1, 14, 49, 124, 214, 256, 214, 124, 49, 14, 1, 1, 15, 59, 169, 334, 466, 466, 334, 169, 59, 15, 1
OFFSET
0,5
COMMENTS
For n >= 1, row n sums to 2*A100314(n).
FORMULA
From Franck Maminirina Ramaharo, Dec 09 2018:(Start)
T(n,k) = A007318(n,k) + 2*(1 - A103451(n,k)).
T(n,k) = 5*A007318(n,k) - 4*A132044(n,k).
n-th row polynomial is 2*(1 - (-1)^(2^n)) + (1 + x)^n + 4*(x - x^n)/(1 - x).
G.f.: (1 - (1 + x)*y + 5*x*y^2 - 4*(x + x^2)*y^3)/((1 - y)*(1 - x*y)*(1 - y - x*y)).
E.g.f.: (4 - 4*x + 4*x*exp(y) - 4*exp(x*y) + (1 - x)*exp((1 + x)*y))/(1 - x). (End)
Sum_{k=0..n} T(n, k) = 2^n + 4*(n - 1 + [n=0]) = 2*A100314(n). - G. C. Greubel, Feb 13 2021
EXAMPLE
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 7, 7, 1;
1, 8, 10, 8, 1;
1, 9, 14, 14, 9, 1;
1, 10, 19, 24, 19, 10, 1;
1, 11, 25, 39, 39, 25, 11, 1;
1, 12, 32, 60, 74, 60, 32, 12, 1;
1, 13, 40, 88, 130, 130, 88, 40, 13, 1;
1, 14, 49, 124, 214, 256, 214, 124, 49, 14, 1;
...
MATHEMATICA
T[n_, m_] = Binomial[n, m] + 4*If[m*(n - m) > 0, 1, 0];
Flatten[Table[T[n, m], {n, 0, 10}, {m, 0, n}]]
PROG
(Maxima) T(n, k) := if k = 0 or k = n then 1 else binomial(n, k) + 4$
create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 09 2018 */
(Sage)
def T(n, k): return 1 if (k==0 or k==n) else binomial(n, k) + 4
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 13 2021
(Magma)
T:= func< n, k | k eq 0 or k eq n select 1 else Binomial(n, k) + 4 >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 13 2021
CROSSREFS
Sequences of the form binomial(n, k) + q: A132823 (q=-2), A132044 (q=-1), A007318 (q=0), A132735 (q=1), A173740 (q=2), this sequence (q=4), A173742 (q=6).
Sequence in context: A176348 A176264 A195397 * A171147 A171695 A179233
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Feb 23 2010
EXTENSIONS
Edited and name clarified by Franck Maminirina Ramaharo, Dec 09 2018
STATUS
approved