login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173743
Numbers k such that phi(tau(k)) = tau(rad(k)).
1
1, 4, 8, 9, 24, 25, 27, 32, 40, 48, 49, 54, 56, 72, 80, 88, 96, 104, 108, 112, 120, 121, 125, 135, 136, 152, 160, 162, 168, 169, 176, 184, 189, 200, 208, 224, 232, 240, 243, 248, 250, 264, 270, 272, 280, 289, 296, 297, 304, 312, 328, 336, 343, 344, 351, 352, 360
OFFSET
1,2
COMMENTS
rad(n) = A007947(n). tau(n) = A000005(n). phi(n) = A000010(n). tau(rad(n)) = A034444(n).
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
FORMULA
{ n : A163109(n) = A034444(n) }.
EXAMPLE
For n=4, phi(tau(4)) = phi(3)=2 equals tau(rad(4)) = tau(2) = 2, so n=4 is in the sequence.
For n=108, phi(tau(108) ) = phi(12) = 4 equals tau(rad(108)) = tau(6) = 4, so n =108 is in the sequence.
MAPLE
with(numtheory): for n from 1 to 500 do :t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)):if phi(tau(n)) = tau(t2) then print (n): else fi:od:
MATHEMATICA
rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); Select[Range[360], EulerPhi[ DivisorSigma[0, #] ] == DivisorSigma[0, rad[#]] &] (* Amiram Eldar, Jul 09 2019 *)
PROG
(Magma) [ k:k in [1..360]| EulerPhi(#Divisors(k)) eq #Divisors(&*PrimeDivisors(k)) ]; // Marius A. Burtea, Jul 09 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 23 2010
STATUS
approved