login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064393
Numbers k such that the exponent of highest power of 2 dividing k! equals the largest prime <= k.
3
4, 8, 9, 22, 26, 27, 32, 33, 50, 51, 56, 57, 70, 76, 77, 82, 94, 95, 100, 112, 118, 119, 128, 129, 134, 135, 176, 177, 186, 187, 196, 266, 267, 274, 275, 280, 296, 297, 342, 343, 352, 358, 364, 365, 372, 386, 387, 392, 393, 400, 406, 407, 426, 427, 454, 455
OFFSET
1,1
COMMENTS
[k/2]+[k/4]+[k/8]+[k/16]+... = prevprime(k+1).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1001 terms from Harvey P. Dale)
EXAMPLE
4! = 2^3*3, 8! = 2^7*3^2*5*7, 9! = 2^7*3^4*5*7, 22! = 2^19*3^9*5^4*7^3*11^2*13*17*19.
MAPLE
for n from 3 to 10^3 do if sum(floor(n/(2^i)), i=1..15) = prevprime(n+1) then printf(`%d, `, n) fi; od:
# second Maple program:
b:= proc(n) option remember;
`if`(n<1, 0, b(n-1)+padic[ordp](n, 2))
end:
a:= proc(n) option remember; local k; for k from 1+
`if`(n=1, 2, a(n-1)) while b(k)<>prevprime(k+1) do od; k
end:
seq(a(n), n=1..100); # Alois P. Heinz, Jul 10 2022
MATHEMATICA
f[n_] := (t = 0; p = 2; While[s = Floor[n/p]; t = t + s; s > 0, p *= 2]; t); Do[ If[ f[n] == Prime[ PrimePi[n]], Print[n]], {n, 2, 500} ]
lp[n_]:=If[PrimeQ[n], n, NextPrime[n, -1]]; Select[Range[460], IntegerExponent[ #!, 2] == lp[#]&] (* Harvey P. Dale, Mar 02 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Sep 29 2001
EXTENSIONS
More terms from Robert G. Wilson v and James A. Sellers, Oct 01 2001
Offset changed to 1 by Alois P. Heinz, Jul 10 2022
STATUS
approved