login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A064395
Primes p for which the exponent of the highest power of 2 dividing p! is equal to prevprime(p).
1
5, 23, 71, 83, 101, 113, 197, 281, 353, 359, 373, 401, 599, 683, 739, 751, 773, 977, 1091, 1097, 1103, 1217, 1223, 1229, 1237, 1283, 1553, 1559, 1601, 1607, 1619, 2039, 2347, 2357, 2389, 2417, 2473, 2539, 2671, 2699, 2749, 2857, 3019, 3049, 3499, 3581
OFFSET
1,1
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 400 terms from Harvey P. Dale)
FORMULA
{ A000040 } intersect { A064394 }. - Alois P. Heinz, Jul 10 2022
EXAMPLE
5!=2^3 * 3 * 5, 23!=2^19 * 3^9 * 5^4 * 7^3 * 11^2 * 13 * 17 * 19 * 23, 71!=2^67 * 3^32 * 5^16 * 7^11 * 11^6 * 13^5 * 17^4 * 19^3 * 23^3 * 29^2 * 31^2 * 37 * 41 * 43 * 47 * 53 * 59 * 61 * 67 * 71.
MAPLE
for n from 3 to 10^4 do if sum(floor(n/(2^i)), i=1..15) = prevprime(n) and isprime(n) then printf(`%d, `, n) fi; od:
MATHEMATICA
f[n_] := (t = 0; p = 2; While[s = Floor[n/p]; t = t + s; s > 0, p *= 2]; t); Do[ If[ f[Prime[n]] == Prime[n - 1], Print[ Prime[n]]], {n, 2, 10^3} ]
Select[Partition[Prime[Range[510]], 2, 1], IntegerExponent[#[[2]]!, 2] == #[[1]]&] [[All, 2]] (* Harvey P. Dale, Feb 22 2018 *)
CROSSREFS
Complement of A064393 relative to A064394.
Cf. A000040.
Sequence in context: A284648 A290187 A243442 * A230497 A138905 A125955
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Sep 29 2001
EXTENSIONS
More terms from James A. Sellers, Oct 01 2001
STATUS
approved