login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163109 a(n) = phi(tau(n)). 11
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 1, 4, 1, 2, 2, 2, 2, 6, 1, 2, 2, 4, 1, 4, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 1, 4, 2, 4, 2, 2, 1, 4, 1, 2, 2, 6, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 2, 2, 2, 4, 1, 4, 4, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 2, 2, 2, 2, 4, 1, 2, 2, 6, 1, 4, 1, 4, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000

Index entries for sequences computed from exponents in factorization of n

FORMULA

a(n) = A000010(A000005(n)). - Charles R Greathouse IV, Aug 11 2009

a(1) = 1, a(p) = 1 for p = primes (A000040), a(pq) = 2 for pq = product of two distinct primes (A006881), a(pq...z) = 2^(k-1) for pq...z = product of k (k > 2) distinct primes p, q, ..., z (A120944), a(p^(q-1) = q - 1 for p, q = primes (A000040).

EXAMPLE

a(16) = a(2^(5-1)) = 5-1 = 4.

MATHEMATICA

Table[EulerPhi[DivisorSigma[0, n]], {n, 1, 80}] (* Carl Najafi, Aug 15 2011 *)

PROG

(PARI) a(n) = eulerphi(numdiv(n)); \\ Michel Marcus, Aug 22 2015

CROSSREFS

Cf. A000005, A000010, A062821, A163377, A163378, A163379.

Sequence in context: A163377 A290085 A322867 * A286574 A329320 A316112

Adjacent sequences:  A163106 A163107 A163108 * A163110 A163111 A163112

KEYWORD

nonn,easy

AUTHOR

Jaroslav Krizek, Jul 20 2009

EXTENSIONS

More terms from Carl Najafi, Aug 15 2011

Further extended by Antti Karttunen, Jul 23 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 17:02 EDT 2020. Contains 336277 sequences. (Running on oeis4.)