login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286574
Sum of the binary weights of the lengths of 1-runs in base-2 representation of n: a(n) = A000523(A286575(n)).
4
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 3, 4, 2, 3, 3, 3, 3, 4, 2, 3, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 3, 4, 1
OFFSET
0,6
COMMENTS
a(0) = 0 (an empty sum).
FORMULA
a(n) = A000523(A286575(n)). [Log_2 of run-length transform of A001316.]
a(n) = A064547(A005940(1+n)).
EXAMPLE
For n = 27, "11011" in binary, there are two 1-runs, both of length 2, thus a(27) = A000120(2) + A000120(2) = 1 + 1 = 2.
For n = 29, "11101" in binary, there are two 1-runs, of lengths 1 and 3, thus a(29) = A000120(1) + A000120(3) = 1 + 2 = 3.
For n = 61, "111101" in binary, there are two 1-runs, of lengths 1 and 4, thus a(61) = A000120(1) + A000120(4) = 1 + 1 = 2.
PROG
(Scheme) (define (A286574 n) (A000523 (A286575 n)))
(Python)
from sympy import factorint, prime, log
import math
def wt(n): return bin(n).count("1")
def a037445(n):
f=factorint(n)
return 2**sum([wt(f[i]) for i in f])
def A(n): return n - 2**int(math.floor(log(n, 2)))
def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
def a286575(n): return a037445(b(n))
def a(n): return int(math.floor(log(a286575(n), 2))) # Indranil Ghosh, May 30 2017
(Python)
# uses RLT function from A278159
def A286574(n): return len(bin(RLT(n, lambda m: 2**(bin(m).count('1')))))-3 # Chai Wah Wu, Feb 04 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, May 28 2017
STATUS
approved