login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286571
Compound filter (prime signature of n & n/gcd(n, sigma(n))): a(n) = P(A046523(n), A017666(n)), where P(n,k) is sequence A000027 used as a pairing function.
2
1, 5, 8, 25, 17, 21, 30, 113, 70, 51, 68, 103, 93, 72, 51, 481, 155, 148, 192, 222, 331, 126, 278, 324, 382, 159, 569, 78, 437, 591, 498, 1985, 126, 237, 786, 2521, 705, 282, 952, 375, 863, 660, 948, 243, 337, 384, 1130, 1759, 1330, 1842, 237, 678, 1433, 520, 1776, 459, 1897, 567, 1772, 2076, 1893, 636, 2713, 8065, 2421, 810, 2280, 1002, 384, 2046
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A046523(n)+A017666(n))^2) - A046523(n) - 3*A017666(n)).
PROG
(PARI)
A017666(n) = (n/gcd(n, sigma(n)));
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
A286571(n) = (1/2)*(2 + ((A046523(n)+A017666(n))^2) - A046523(n) - 3*A017666(n));
(Scheme) (define (A286571 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A017666 n)) 2) (- (A046523 n)) (- (* 3 (A017666 n))) 2)))
(Python)
from sympy import factorint, gcd, divisor_sigma
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def P(n):
f = factorint(n)
return sorted([f[i] for i in f])
def a046523(n):
x=1
while True:
if P(n) == P(x): return x
else: x+=1
def a(n): return T(a046523(n), n/gcd(n, divisor_sigma(n))) # Indranil Ghosh, May 26 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 26 2017
STATUS
approved