login
A286571
Compound filter (prime signature of n & n/gcd(n, sigma(n))): a(n) = P(A046523(n), A017666(n)), where P(n,k) is sequence A000027 used as a pairing function.
2
1, 5, 8, 25, 17, 21, 30, 113, 70, 51, 68, 103, 93, 72, 51, 481, 155, 148, 192, 222, 331, 126, 278, 324, 382, 159, 569, 78, 437, 591, 498, 1985, 126, 237, 786, 2521, 705, 282, 952, 375, 863, 660, 948, 243, 337, 384, 1130, 1759, 1330, 1842, 237, 678, 1433, 520, 1776, 459, 1897, 567, 1772, 2076, 1893, 636, 2713, 8065, 2421, 810, 2280, 1002, 384, 2046
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A046523(n)+A017666(n))^2) - A046523(n) - 3*A017666(n)).
PROG
(PARI)
A017666(n) = (n/gcd(n, sigma(n)));
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
A286571(n) = (1/2)*(2 + ((A046523(n)+A017666(n))^2) - A046523(n) - 3*A017666(n));
(Scheme) (define (A286571 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A017666 n)) 2) (- (A046523 n)) (- (* 3 (A017666 n))) 2)))
(Python)
from sympy import factorint, gcd, divisor_sigma
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def P(n):
f = factorint(n)
return sorted([f[i] for i in f])
def a046523(n):
x=1
while True:
if P(n) == P(x): return x
else: x+=1
def a(n): return T(a046523(n), n/gcd(n, divisor_sigma(n))) # Indranil Ghosh, May 26 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 26 2017
STATUS
approved