OFFSET
1,2
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
PROG
(PARI)
A009194(n) = gcd(n, sigma(n));
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
(Scheme) (define (A286570 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A009194 n)) 2) (- (A046523 n)) (- (* 3 (A009194 n))) 2)))
(Python)
from sympy import factorint, gcd, divisor_sigma
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def P(n):
f = factorint(n)
return sorted([f[i] for i in f])
def a046523(n):
x=1
while True:
if P(n) == P(x): return x
else: x+=1
def a(n): return T(a046523(n), gcd(n, divisor_sigma(n))) # Indranil Ghosh, May 26 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 26 2017
STATUS
approved