login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134704 "Hidden" person three person game Markov: MA=MB={{0.1},{1,1}}: Fibonacci: game value =1 MC={{-2, -2, 0}, {1, 0, 1}, {0, 1, 1}}: game value=-2 A plays with C; B plays with C; but A has no direct contact with B . A, B are the "observed" games. Characteristic polynomial: 4 + 9 x - 3 x^2 - 12 x^3 + x^4 + 4 x^5 + x^6 - x^7. 0
3, 3, 10, 9, 17, 40, 25, 103, 114, 141, 469, 264, 989, 1507, 1114, 5281, 3369, 8808, 19633, 9039, 56162, 48133, 71245, 245320, 89301, 555627, 700426, 512505, 2896001, 1203880, 5013385, 9831415, 3325650, 31944381, 19420165, 39925128, 130084109 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
C is the "dark" or "hidden" player. it is simpler than a three three by three games, but the middle matrix was hard to find at gv=-2. Roots: aaa = Table[x /. NSolve[Det[M - x*IdentityMatrix[7]] == 0, x][[n]], {n, 1, 7}]; {-1.24279 - 1.07145 I, -1.24279 + 1.07145I, -0.618034, -0.618034, 1.48558, 1.61803, 1.61803} Ratio: a1 = Table[N[a[[n]]/a[[n - 1]]], {n, 7, 50}]; The ratio Alternates. Game value of total matrix is -1: Det[M]/(Sum[Sum[If[i == j, M[[i, j]], 0], {i, 1, 7}], {j, 1, 7}] - Sum[Sum[If[i == j, 0, M[[i, j]]], {i, 1, 7}], {j, 1, 7}])
LINKS
FORMULA
M = {{0, 1, 0, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 0, 0}, {0, 0, -2, -2, 0, 0, 0}, {0, 0, 1, 0, 1, 0, 0}, {0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 1, 1}}; v[1] = {0, 1, 0, 1, 0, 0, 1}; v[n]=M.v[n-1]; a(n) =Sum[v[n][[i],{i,1,7}]
G.f.: -x*(10*x^4+12*x^3-x^2-3*x-3)/((x^2+x-1)*(4*x^3+x^2-x-1)). [Colin Barker, Nov 01 2012]
EXAMPLE
mc = {{-2, -2, 0}, {1, 0, 1}, {0, 1, 1}};
Game Value mc=Det[mc]/(Sum[Sum[If[i == j, mc[[i, j]], 0], {i, 1, 3}], {j, 1, 3}] - Sum[Sum[If[i == j, 0, mc[[i, j]]], {i, 1, 3}], {j, 1, 3}])=-2
MATHEMATICA
M = {{0, 1, 0, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 0, 0}, {0, 0, -2, -2, 0, 0, 0}, {0, 0, 1, 0, 1, 0, 0}, {0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 1, 1}}; v[1] = {0, 1, 0, 1, 0, 0, 1}; v[n_] := v[n] = M.v[n - 1]; a = Table[Apply[Plus, v[n]], {n, 1, 50}] Det[M - x*IdentityMatrix[7]]; Factor[%]
CROSSREFS
Sequence in context: A054511 A362469 A286570 * A057210 A330632 A278832
KEYWORD
nonn,uned,easy
AUTHOR
Roger L. Bagula, Jan 27 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 12:17 EDT 2024. Contains 373527 sequences. (Running on oeis4.)