login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286568
Compound filter (phi(n) & 2-adic valuation of sigma(n)): a(n) = P(A000010(n), A286357(n)), where P(n,k) is sequence A000027 used as a pairing function.
2
1, 1, 8, 3, 14, 8, 42, 10, 21, 14, 76, 19, 90, 42, 63, 36, 152, 21, 208, 44, 148, 76, 322, 53, 210, 90, 228, 117, 434, 63, 625, 136, 296, 152, 402, 78, 702, 208, 375, 152, 860, 148, 988, 251, 324, 322, 1271, 169, 903, 210, 627, 324, 1430, 228, 943, 375, 816, 434, 1828, 187, 1890, 625, 777, 528, 1273, 296, 2344, 560, 1220, 402, 2698, 300, 2700, 702, 901
OFFSET
1,3
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A000010(n)+A286357(n))^2) - A000010(n) - 3*A286357(n)).
PROG
(PARI)
A000010(n) = eulerphi(n);
A001511(n) = (1+valuation(n, 2));
A286357(n) = A001511(sigma(n));
A286568(n) = (1/2)*(2 + ((A000010(n)+A286357(n))^2) - A000010(n) - 3*A286357(n));
(Scheme) (define (A286568 n) (* (/ 1 2) (+ (expt (+ (A000010 n) (A286357 n)) 2) (- (A000010 n)) (- (* 3 (A286357 n))) 2)))
(Python)
from sympy import divisor_sigma as D, totient
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def a001511(n): return bin(n)[2:][::-1].index("1") + 1
def a286357(n): return a001511(D(n))
def a(n): return T(totient(n), a286357(n)) # Indranil Ghosh, May 26 2017
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 26 2017
STATUS
approved