login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286154
Compound filter: a(n) = T(A055396(n), A000010(n)), where T(n,k) is sequence A000027 used as a pairing function.
5
0, 1, 5, 2, 18, 2, 40, 7, 23, 7, 96, 7, 142, 16, 38, 29, 238, 16, 308, 29, 80, 46, 444, 29, 234, 67, 173, 67, 676, 29, 791, 121, 212, 121, 328, 67, 1093, 154, 302, 121, 1339, 67, 1499, 191, 302, 232, 1785, 121, 994, 191, 530, 277, 2227, 154, 864, 277, 668, 379, 2718, 121, 2944, 436, 668, 497, 1228, 191, 3505, 497, 992, 277, 3936, 277, 4207, 631, 822, 631
OFFSET
1,3
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A055396(n)+A000010(n))^2) - A055396(n) - 3*A000010(n)).
MATHEMATICA
Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {If[n == 1, 0, PrimePi[ FactorInteger[n][[1, 1]] ]], EulerPhi@ n}, {n, 76}] (* Michael De Vlieger, May 04 2017 *)
PROG
(PARI)
A000010(n) = eulerphi(n);
A055396(n) = if(n==1, 0, primepi(factor(n)[1, 1])); \\ This function from Charles R Greathouse IV, Apr 23 2015
A286154(n) = (2 + ((A055396(n)+A000010(n))^2) - A055396(n) - 3*A000010(n))/2;
for(n=1, 10000, write("b286154.txt", n, " ", A286154(n)));
(Scheme) (define (A286154 n) (* (/ 1 2) (+ (expt (+ (A055396 n) (A000010 n)) 2) (- (A055396 n)) (- (* 3 (A000010 n))) 2)))
(Python)
from sympy import primepi, isprime, primefactors, totient
def a049084(n): return primepi(n)*(1*isprime(n))
def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def a(n): return T(a055396(n), totient(n)) # Indranil Ghosh, May 05 2017
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 04 2017
STATUS
approved