The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286144 Compound filter: a(n) = T(A000010(n), A257993(n)), where T(n,k) is sequence A000027 used as a pairing function. 7
 1, 2, 3, 5, 10, 8, 21, 14, 21, 14, 55, 19, 78, 27, 36, 44, 136, 34, 171, 44, 78, 65, 253, 53, 210, 90, 171, 90, 406, 63, 465, 152, 210, 152, 300, 103, 666, 189, 300, 152, 820, 103, 903, 230, 300, 275, 1081, 169, 903, 230, 528, 324, 1378, 208, 820, 324, 666, 434, 1711, 187, 1830, 495, 666, 560, 1176, 251, 2211, 560, 990, 324, 2485, 349, 2628, 702, 820, 702 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 MathWorld, Pairing Function FORMULA a(n) = (1/2)*(2 + ((A000010(n)+A257993(n))^2) - A000010(n) - 3*A257993(n)). MATHEMATICA Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {EulerPhi@ n, Module[{i = 1}, While[! CoprimeQ[Prime@ i, n], i++]; i]}, {n, 74}] (* Michael De Vlieger, May 04 2017 *) PROG (PARI) A000010(n) = eulerphi(n); A257993(n) = { for(i=1, n, if(n%prime(i), return(i))); } A286144(n) = (2 + ((A000010(n)+A257993(n))^2) - A000010(n) - 3*A257993(n))/2; for(n=1, 10000, write("b286144.txt", n, " ", A286144(n))); (Scheme) (define (A286144 n) (* (/ 1 2) (+ (expt (+ (A000010 n) (A257993 n)) 2) (- (A000010 n)) (- (* 3 (A257993 n))) 2))) (Python) from sympy import prime, primepi, gcd, totient def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a053669(n):     x=1     while True:         if gcd(prime(x), n) == 1: return prime(x)         else: x+=1 def a257993(n): return primepi(a053669(n)) def a(n): return T(totient(n), a257993(n)) # Indranil Ghosh, May 05 2017 CROSSREFS Cf. A000010, A000027, A257993, A286142, A286143, A286152, A286160, A286161, A286162, A286163, A286164. Sequence in context: A250747 A241262 A244489 * A038807 A094542 A175481 Adjacent sequences:  A286141 A286142 A286143 * A286145 A286146 A286147 KEYWORD nonn AUTHOR Antti Karttunen, May 04 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 06:30 EDT 2021. Contains 346273 sequences. (Running on oeis4.)