login
A286143
Compound filter: a(n) = T(A055881(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function.
8
1, 5, 2, 12, 2, 31, 2, 38, 7, 23, 2, 94, 2, 23, 16, 138, 2, 94, 2, 80, 16, 23, 2, 355, 7, 23, 29, 80, 2, 499, 2, 530, 16, 23, 16, 706, 2, 23, 16, 302, 2, 499, 2, 80, 67, 23, 2, 1279, 7, 80, 16, 80, 2, 328, 16, 302, 16, 23, 2, 1894, 2, 23, 67, 2082, 16, 499, 2, 80, 16, 467, 2, 2779, 2, 23, 67, 80, 16, 499, 2, 1178, 121, 23, 2, 1894, 16, 23, 16, 302, 2, 1894, 16
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A055881(n)+A046523(n))^2) - A055881(n) - 3*A046523(n)).
MATHEMATICA
Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 - Boole[n == 1] & @@ {Module[{m = 1}, While[Mod[n, m!] == 0, m++]; m - 1], Times @@ MapIndexed[ Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]]}, {n, 92}] (* Michael De Vlieger, May 04 2017, after Robert G. Wilson v at A055881 *)
PROG
(PARI)
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
A055881(n) = { my(i); i=2; while((0 == (n%i)), n = n/i; i++); return(i-1); }
A286143(n) = (1/2)*(2 + ((A055881(n)+A046523(n))^2) - A055881(n) - 3*A046523(n));
for(n=1, 10000, write("b286143.txt", n, " ", A286143(n)));
(Scheme) (define (A286143 n) (* (/ 1 2) (+ (expt (+ (A055881 n) (A046523 n)) 2) (- (A055881 n)) (- (* 3 (A046523 n))) 2)))
(Python)
from sympy import factorial, factorint
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def P(n):
f = factorint(n)
return sorted([f[i] for i in f])
def a046523(n):
x=1
while True:
if P(n) == P(x): return x
else: x+=1
def a055881(n):
m = 1
while n%factorial(m)==0:
m+=1
return m - 1
def a(n): return T(a055881(n), a046523(n)) # Indranil Ghosh, May 05 2017
CROSSREFS
Differs from A286142 for the first time at n=24, where a(24) = 355, while A286142(24) = 328.
Sequence in context: A065268 A275509 A286142 * A130298 A128116 A082153
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 04 2017
STATUS
approved